
The DevOps
Adoption
Playbook

A Guide to Adopting
DevOps in a Multi-Speed

IT Enterprise

Sanjeev Sharma

The DevOps Adoption Playbook: A Guide to Adopting DevOps in a Multi-Speed IT Enterprise

Published by
John Wiley & Sons, Inc.
10475 Crosspoint Boulevard
Indianapolis, IN 46256
www.wiley.com
Copyright © 2017 by John Wiley & Sons, Inc., Indianapolis, Indiana

Published simultaneously in Canada

ISBN: 978-1-119-30874-4

ISBN: 978-1-119-31052-5 (ebk)

ISBN: 978-1-119-31076-1 (ebk)

Manufactured in the United States of America

10 9 8 7 6 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise,
except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization through payment of the
appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permission should be
addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken,
NJ 07030, (201) 748-6011, fax (201) 748-6008, or online at http://www.wiley.com/go/
permissions.

Limit of Liability/Disclaimer of Warranty: The publisher and the author make no representations
or warranties with respect to the accuracy or completeness of the contents of this work and spe-
cifically disclaim all warranties, including without limitation warranties of fitness for a particular
purpose. No warranty may be created or extended by sales or promotional materials. The advice
and strategies contained herein may not be suitable for every situation. This work is sold with the
understanding that the publisher is not engaged in rendering legal, accounting, or other profes-
sional services. If professional assistance is required, the services of a competent professional
person should be sought. Neither the publisher nor the author shall be liable for damages arising
herefrom. The fact that an organization or website is referred to in this work as a citation and/or
a potential source of further information does not mean that the author or the publisher endorses
the information the organization or website may provide or recommendations it may make.
Further, readers should be aware that Internet websites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services please contact our Customer
Care Department within the United States at (877) 762-2974, outside the United States at
(317) 572-3993 or fax (317) 572-4002.

Wiley publishes in a variety of print and electronic formats and by print-on-demand. Some mate-
rial included with standard print versions of this book may not be included in e-books or in
print-on-demand. If this book refers to media such as a CD or DVD that is not included in the
version you purchased, you may download this material at http://booksupport.wiley
.com. For more information about Wiley products, visit www.wiley.com.

Library of Congress Control Number: 2016962068

Trademarks: Wiley and the Wiley logo are trademarks or registered trademarks of John Wiley
& Sons, Inc. and/or its affiliates, in the United States and other countries, and may not be used
without written permission. IBM, the IBM Press logo, UrbanCode, uDeploy, System z, Rational,
IBM Watson, WebSphere, Bluemix, InfoSphere, Optim, PureApplication, DB2, SoftLayer, and Blue
Box are trademarks or registered trademarks of International Business Machines Corporation in
the United States and/or other countries. A current list of IBM trademarks is available on the web
at “copyright and trademark information” as www.ibm.com/legal/copytrade.shtml.
All other trademarks are the property of their respective owners. John Wiley & Sons, Inc. is not
associated with any product or vendor mentioned in this book.

http://www.wiley.com
http://www.wiley.com/go/permissions
http://booksupport.wiley.com
http://www.wiley.com
http://www.ibm.com/legal/copytrade.shtml
http://booksupport.wiley.com

To my wife Ritika, for always motivating me to do more, be more, and never

be satisfied with the status quo. And my children, Saransh and Shreya, for being

the ones I am motivated to do and be more for.

About the Author

Sanjeev Sharma is an internationally known DevOps and cloud transformation
thought leader, technology executive, and published author. Sanjeev’s indus-
try experience includes tenures as CTO and Worldwide Technical Sales
Leader, Acquisition Integration Technical Leader, and IT Architect. As an
IBM Distinguished Engineer, Sanjeev is recognized at the highest levels of the
exclusive core of technical leaders at IBM.

Sanjeev provides core leadership to drive the adoption of cutting-edge solu-
tions, architectures, and strategies for DevOps and the cloud. His experience
as the Global CTO for DevOps Technical Sales at IBM, combined with his
deep insight and ability to understand both business and IT needs, drives a
unique perspective for any business. This perspective allows Sanjeev to advise
and mentor C-level and senior technical executives on achieving DevOps and
cloud transformations, across industries and geographies.

Sanjeev is a frequent speaker on the international tech scene, as a cloud
and DevOps expert. He regularly publishes articles, blog posts, and videos for
leading tech publications and his own blog, at http://bit.ly/sdarchitect.
Sanjeev tweets as @sd_architect.

http://bit.ly/sdarchitect

Lee Reid has more than 30 years’ experience in software engineering, archi-
tecture, product development, technology innovation, and team leadership in
both manufacturing and information technology domains. Lee is an engineer-
ing graduate of General Motors Institute (BME) and the University of Michigan
(MSE) and holds four U.S. patents. He has recently transitioned into higher
education, where he leads IT and is introducing Lean and DevOps practices
at St. Norbert College.

About the Technical Editor

Credits

Project Editor
Adaobi Obi Tulton

Technical Editor
Lee Reid

Production Editor
Rebecca Anderson

Copy Editor
Marylouise Wiack

Production Manager
Katie Wisor

Manager of Content Development
& Assembly
Mary Beth Wakefield

Marketing Manager
Lorna Mein

Professional Technology & Strategy
Director
Barry Pruett

Business Manager
Amy Knies

Executive Editor
Jim Minatel

Project Coordinator, Cover
Brent Savage

Proofreader
Kim Wimpsett

Indexer
J&J Indexing

Cover Designer
Wiley

Cover Image
©traffic_analyzer/Getty Images

This book is an effort to put to paper countless conversations and (sometimes
heated) discussions and debates on DevOps and IT optimization and innova-
tion that I have had with my customers, co-workers, and peers in the DevOps
community. Through these conversations and discussions, dozens of people
have contributed to this book, not to mention all those whose blogs, articles,
books, webinars, videos, meetings, and presentations I learned from.

The key contributors include my fellow DevOps subject matter experts
and technology thought leaders at IBM. These include (in alphabetical order
by first name):

Acknowledgments

 ■ Al Wagner
 ■ Albert Ho
 ■ Alex Abi Khaled
 ■ Ana Lopez-Mancisidor
 ■ Andy Moynahan
 ■ Ann Marie Somerville
 ■ Anshu Kak
 ■ Anujay Bidla
 ■ Ava Hakim
 ■ Bala Rajaraman
 ■ Bernie Coyne
 ■ Bill Higgins
 ■ Bob Bogan
 ■ Brian Naylor
 ■ Chris Lazzaro
 ■ Chris Lucca
 ■ C. J. Paul
 ■ Claudette Hickey
 ■ Cliff Utstein
 ■ Dan Berg
 ■ David Curbishley
 ■ David Leigh

 ■ David Ziskind
 ■ Dibbe Edwards
 ■ Eric Minick
 ■ Erik Anderson
 ■ Greg Wunderle
 ■ Hayden Lindsey
 ■ Helen Dai
 ■ Jagan Karuturi
 ■ James Pierce
 ■ Jeff Crume
 ■ Jim Fieseler
 ■ Jim Moffitt
 ■ John Lanuti
 ■ John Wiegand
 ■ Kay Johnson
 ■ Kedar Walimbe
 ■ Kristof Kloeckner
 ■ Kyle Brown
 ■ Leigh Williamson
 ■ Mahendra Pingale
 ■ Maneesh Goyal
 ■ Mark Borowski

Acknowledgmentsxii

 ■ Mark Meinschein
 ■ Mark Roberts
 ■ Mark Tomlinson
 ■ Meenagi Venkat
 ■ Michael Elder
 ■ Michael Samano
 ■ Mike McNamee
 ■ Mustafa Kapadia
 ■ Paul Bahrs
 ■ Paul Meharg
 ■ Peter Eeles
 ■ Peter Spung
 ■ Randy Newell
 ■ René Bostic
 ■ Rick Weaver
 ■ Rob Cuddy

 ■ Robbie Minshall
 ■ Roger Snook
 ■ Rosalind Radcliffe
 ■ Sal Vella
 ■ Saleem Padani
 ■ Steve Abrams
 ■ Steve Kagan
 ■ Steven Boone
 ■ Sudhakar Frederick
 ■ Swati Moran
 ■ Tony Doyle
 ■ Tim Hahn
 ■ Tim Pouyer
 ■ Varban Vassilev
 ■ Wendy Toh

Some contributors who were formerly at IBM include the following:

 ■ Alan Sanie
 ■ Ashok Reddy
 ■ Bowman Hall
 ■ David Grimm
 ■ David Myers

 ■ Jan Svoboda
 ■ Mike Lundblad
 ■ Murray Cantor
 ■ Steven Pogue
 ■ Walker Royce

Several key customers, business partners, and experts also contributed, as
real-life examples of leaders who led DevOps transformations at their own
companies and organizations. Their stories from the trenches are the best
sources of lessons learned. In many cases, they were at the other end of the
conversations that led to the lessons learned and practices documented in this
book. Because I met most of these people in a professional capacity as an IBM
employee, I cannot list them all here. I will list the few who also co-presented at
conferences, meetings, and webinars with me, or co-authored articles or blogs
with me. They include the following (along with their current employers):

 ■ Alan Shimel, DevOps.com
 ■ Antony Morris, Monitise
 ■ Ben Chodroff, CloudOne

Acknowledgments xiii

 ■ Brad Schick, Skytap
 ■ Carmen DeArdo, Nationwide Insurance
 ■ Chris Lepre, Wells Fargo
 ■ Gareth Evans, Monitise
 ■ James Governor, RedMonk
 ■ Jayne Groll, DevOps Institute
 ■ John Comas, NBCUniversal Media
 ■ John Kosco, Blue Agility
 ■ J. P. Morgenthal, CSC
 ■ Mark Howell, Lloyds Banking Group
 ■ Tapabrata “Topo” Pal, Capital One

I would be remiss to not acknowledge separately Gene Kim, the über-
guru of DevOps, with his contributions through his books and his DevOps
Enterprise Summit Conference. I personally had multiple opportunities to talk
to him one-on-one, including a video interview I recorded in 2014 (https://
youtube/6QK2Mt-KPo4).

I would also like to give a special thanks to Lee Reid. I have worked with Lee
for more than a decade. He was also my “partner in crime,” leading the
Worldwide DevOps architect team at IBM for two years. We developed the
DevOps Value Stream Mapping workshop techniques together, and I personally
bounced tons of ideas off of him. It was only fitting that I had the opportunity
to leverage Lee’s talents and mind, despite his having left IBM for St. Norbert
College, by having him be the technical editor of this book. There is no way
the book would have made it to its final refined and well-structured form
without Lee’s insights, critique, and feedback.

Lastly, I would like to thank the wonderful editing staff at Wiley: Adaobi
Obi Tulton, whose skills certainly live up to her Jedi-sounding name, and
Marylouise Wiack for her complete mastery of language and prose (and yes,
punctuation—my nemesis). The book is light-years ahead of what I originally
put to paper because of their hard work and painstaking correction of my meek
attempt to put words together into coherent sentences.

https://youtube/6QK2Mt-KPo4
https://youtube/6QK2Mt-KPo4

Contents at a Glance

Introduction ��xxiii

 1 DevOps: An Overview ��1

 2 Adopting DevOps �� 39

 3 Developing a Business Case for a DevOps Transformation����� 67

 4 DevOps Plays for Optimizing the Delivery Pipeline ���������������� 87

 5 DevOps Plays for Driving Innovation����������������������������������� 189

 6 Scaling DevOps for the Enterprise��������������������������������������� 261

 7 Leading DevOps Adoption in the Enterprise������������������������ 307

 Appendix Case Study: Example DevOps Adoption
Roadmap ��� 331

 Index ��� 347

Contents

Introduction ��� xxiii

 1 DevOps: An Overview ��1
DevOps: Origins ��2

DevOps: Roots ��4

Addressing Dev versus Ops ���7

DevOps: Practices ��10

Continuous Integration���11

Continuous Delivery ���16

Supporting Practices���20

Shift Left ���29

Architecture and Risk Mitigation ���31

Continuous Improvement ���33

Metrics ���33

Business Drivers ��34

DevOps: Culture ��35

Summary���37

 2 Adopting DevOps �� 39
Developing the Playbook���41

Identifying the Target State (Business Goals
and Drivers) ��42

Assessing the Current State���45

Choosing the Transformation Plays ���60

Adopting the Transformation Plays ���61

Summary���65

 3 Developing a Business Case for a DevOps Transformation����� 67
Developing The Business Case���68

Completing The Business Model Canvas ���71

Contentsxviii

Customer Segments ��72

Line of Business���72

IT Organization���74

Value Propositions ���75

Line of Business���75

IT Organization���77

Channels ���80

Line of Business���80

IT Organization���80

Customer Relationships ���80

Line of Business���80

IT Organization���81

Revenue Streams ���81

Line of Business���81

IT Organization���81

Key Resources ��82

Line of Business���82

IT Organization���82

Key Activities ���82

Line of Business���83

IT Organization���83

Key Partnerships ��84

Line of Business���84

IT Organization���84

Cost Structures ��85

Line of Business���85

IT Organization���85

Summary���85

 4 DevOps Plays for Optimizing the Delivery Pipeline ���������������� 87
DevOps as an Optimization Exercise ��88

Business Intent: Optimization versus Innovation��������������������������89

Contents xix

Core Themes ���95

Minimizing Cycle Time ���95

Reducing Batch Size ��98

Establishing the Right Culture� ��102

The DevOps Plays ��106

Play: Establishing Metrics and KPIs��106

Play: Agile Adoption �� 113

Play: Integrated Delivery Pipeline �� 117

Play: Continuous Integration���123

Play: Continuous Delivery ���128

Play: Shift Left—Testing ��142

Play: Shift Left—Ops Engagement ��149

Play: Continuous Monitoring and Feedback ������������������������������155

Play: Release Management ��161

Specializing Core Plays ��165

Play: DevOps for Mobile ���165

Play: DevOps for Mainframe ��� 173

Play: DevOps for Internet of Things��� 177

Play: DevOps for Big Data and Analytics �����������������������������������180

Summary���186

 5 DevOps Plays for Driving Innovation����������������������������������� 189
Optimize to Innovate���190

The Uber Syndrome ��192

Innovation and the Role of Technology ���192

Innovating for New Business Models��� 193

Business Model Experimentation ��194

Innovating for New User Engagement Models ��������������������������195

Core Themes ���198

Achieving Multi-Speed IT ��198

Building the Right Thing ���202

Enabling Experimentation���206

Delivering Antifragile Systems���208

IT Systems and Antifragility��� 211

Contentsxx

Play: Build a DevOps Platform ���216

Application Delivery and Antifragile Systems�����������������������������218

Environment Abstraction ��219

Cloud-Hosted DevOps Platform ��221

Infrastructure as a Service ���226

OpenStack Heat as an Abstraction Layer �����������������������������������232

Platform as a Service���233

Containers ��238

Play: Deliver Microservices Architectures ���241

Microservices Architecture ��243

12-Factor App ���245

Cloud Native ��247

Microservices and Containers ���249

Migrating to Microservices ���249

Play: Develop an API Economy���253

Deployment Automation and APIs ��255

DevOps Platform and APIs ��255

Play: Organizing for Innovation ���257

Developing an Innovation Culture in Large Organizations ��������259

Summary���260

 6 Scaling DevOps for the Enterprise��������������������������������������� 261
Core Themes ���263

Organizational Culture ��263

Standardization of Tools and Practices ��������������������������������������264

Organized Adoption ���265

Breaking Down Organizational Silos��266

Play: DevOps Center of Competency���267

Capabilities and Goals of a DevOps CoC�����������������������������������268

Core CoC Roles���269

The DevOps Coach���270

Setting Up a CoC ��272

Play: Developing Culture of Innovation at Scale�������������������������������273

The Offering Management Team ��276

Contents xxi

Play: Developing a Culture of Continuous Improvement ������������������278

Developing an Adoption Roadmap ���280

Continuous Improvement and Value Stream Mapping ��������������282

Play: Team Models for DevOps ��284

Play: Standardization of Tools and Processes ������������������������������������287

Standardization of an Integrated DevOps Platform �������������������289

Play: Security Considerations for DevOps ��291

Managing Security-Related Risks���292

Addressing Security for DevOps Processes and Platforms ����������295

The API Economy and Security ��299

Play: DevOps and Outsourcing ��301

Strategic Outsourcing ���302

IT Supply Chain ��303

Enabling DevOps with Outsourcing ��304

Summary���304

 7 Leading DevOps Adoption in the Enterprise������������������������ 307
Play: DevOps as a Transformation Exercise ��������������������������������������309

Compelling Reasons to Act ��� 311

DevOps Transformation Anti-patterns��������������������������������������� 312

Play: Developing a Culture of�Collaboration and Trust ��������������������� 315

Visibility Enables Trust��� 316

It’s All about the People �� 317

Play: DevOps Thinking for the Line of Business �������������������������������� 318

Line of Business–IT Engagement ��� 319

Engaging in the DevOps Transformation ����������������������������������321

Move Shadow IT out of the Shadows ��321

Play: Starting with Pilot Projects ��322

Pilot Project Selection ���324

Executive Sponsorship ��325

Play: Rearing Unicorns on an Aircraft Carrier �����������������������������������325

Fostering Ideas ��327

Summary���329

Contentsxxii

 Appendix Case Study: Example DevOps Adoption
Roadmap ��� 331

Organization Background ��331

Roadmap Structure��332

DevOps Optimization and Innovation Workshop ����������������������333

Background and Context ��334

Adoption Roadmap ���336

Business Drivers ��336

Existing IT Initiatives ���337

Bottlenecks ���338

Root Causes ��340

DevOps Practices ��341

Roadmap Adoption���346

 Index ��� 347

Introduction

What’s In Your PlaYbook?

In April 2016, the Villanova Wildcats played the North Carolina Tar Heels
in the 2016 NCAA Basketball National Championship Game. The game
was the greatest ever, and it all came down to one last play, with just 4.7
seconds left on the clock. Joel Berry II hit a three-pointer to tie the game at
74 apiece, and Villanova Coach Jay Wright called his final timeout. In the
NCAA, you have to go down the entire length of the court after a timeout.
Immediately, Kris Jenkins of Villanova inbounded the ball to point guard
Ryan Arcidiacono. Arcidiacono dribbled down the court past Berry, but
it was the design of the play on both sides that made for the great end-
ing. UNC played a 1-3-1 man-on-man press to Arcidiacono, to hopefully
force a turnover, but if Arcidiacono got past Berry, they had Justin Jackson,
Isaiah Hicks, and Brice Johnson, all who could stop the three-point shot.
Villanova had designed a play to make sure that Arcidiacono got the ball
off the inbound in a position in which he could get past half-court and
find someone on the three-point line. Arcidiacono got past Berry, UNC
collapsed, and Arcidiacono popped it back to Jenkins on the three-point
line to get an almost-uncontested three-pointer to win the championship,
and boy did it pay off. #Win!

—By Saransh Sharma (Sharma, 2016)

a Playbook for adopting Devops at scale
Teams that excel do so not just because they have the best members, the best
tools, the best training, the best processes, or the best leaders and coaches.
They excel because they, as a team, have all of the above but also know what
to do when they face various situations and challenges. They have a playbook
of potential solutions (plays) for a variety of scenarios.

When faced with a unique situation or challenge, the players and coaches
come together as a team to pick the right play from the playbook, and then,

Introductionxxiv

most importantly, they execute it. My alma mater, Villanova University, won
the national championship when it came down to the final play, with seconds
on the clock, because they had plays they had practiced before. They read the
situation, picked the right play, and executed with precision to win. Had they
not had the play that would catch North Carolina off guard, there may have
been a different outcome.

In the same way, IT organizations need plays to execute. For day-to-day
application delivery and operations, these so-called plays are captured in their
development, delivery, and operational processes. IT organizations that suc-
ceed have good processes and execute them with excellence. However, trans-
forming IT organizations is another story. Most organizations struggle with
transformations, not having well-defined, winning plays that can overcome
cultural and organizational inertia. This book captures a set of proven, repeat-
able plays for adopting DevOps at the enterprise scale and for transforming a
large, complex, distributed IT organization to adopt DevOps.

These plays come from my experience over several years in the trenches
as I helped dozens of organizations, of myriad sizes and maturity levels, in a
variety of industries and geographical locations, to adopt DevOps. Since the
early days of DevOps, as the Worldwide CTO of DevOps Technical Sales and
Adoption at IBM, I have had a front-row seat to see the evolution and matura-
tion of DevOps from a set of practices pioneered by startups to a cultural and
technological transformation effort in large enterprises. I was a pioneer and
thought leader for DevOps at IBM, and I became the face of DevOps to IBM’s
clients. This book distills patterns of success that I have observed among
hundreds of clients working, struggling, and succeeding at adopting DevOps
at organization or enterprise-wide scale.

Adopting DevOps in a small, co-located organization, without a lot of cul-
tural memory, is not difficult. Even in large organizations, small teams—
the proverbial two-pizza1 teams—regularly succeed at attaining the business
results promised by DevOps. In most organizations, you see many such efforts
made, and most succeed. It is taking that success from an individual, isolated
team level and scaling it to an enterprise that is a challenge. It is like hav-
ing a series of small dance squads around the organization. However, these
dance squads are all unique; some are doing the salsa, some jazz, some are
ballroom dancing, while yet others are doing something my daughter tells me

1 Amazon CEO Jeff Bezos claims that a team that cannot be fed with two pizzas is too big to
be a productive team.

Introduction xxv

is “hip-hop.” They cannot combine and grow to a massive dance ensemble that
can perform at the next halftime show, filling up the entire paying field of a
football stadium. For that they need to be dancing not only to the same music
but also be performing the same dance form, in unison. Similarly, small unique
teams cannot impact the entire organization. These teams need to make the
effort to standardize practices, processes, platforms, and tools in order to allow
them to be replicated in other parts of the organization.

The organization, in turn, needs to set the right environment for DevOps
adoption by sponsoring transformation efforts, by enabling change to rigid
legacy processes, and by a top-down push to overcome cultural inertia.

NOTE A bottom-up practitioner-led effort allows extremely produc-
tive individual teams to adopt DevOps and thrive. A top-down executive
leadership-led effort enables these individual successes to scale.

The engagement of the business is imperative for these scaling efforts to
succeed. IT organizations exist to deliver the capabilities a business needs in
order to deliver business value to its customers. The business is asking the IT
organization for optimization—to be more agile, to be resilient to change, to
be more responsive, to do more with less, to be more productive, to increase
throughput, to deliver faster, to deliver at higher quality, to be reactive to the
market, to accelerate past the competition, to keep up with an ever-changing
regulatory and compliance regime, and, yes, to reduce expenses.

In addition, it may also be asking for innovation—to allow the company
to enter new markets, to enable exponential growth, to engage and grow the
customer base, to be responsive to customers’ needs, and, again, to reduce
expenses. Delivering on these asks (hopefully not all of them at the same time)
is what drives the need for change. It is what creates the motivation to work
toward achieving the benefits that come from adopting DevOps.

NOTE You do not just adopt DevOps because it is cool. You need to have
a business reason. The need for agility or velocity is the number-one reason
that DevOps exists. The maturing and wide adoption of DevOps over the
last few years is a reflection of today’s dynamic marketplace, of customers’
expectations.

Thus, in order for IT to undergo a transformation, this change has to
improve and enhance IT’s ability to deliver business capabilities in a manner

xxvi Introduction

that, in turn, improves and enhances the business value delivered. Proper
partnering between the business and IT is imperative so that the transforma-
tion IT undergoes by adopting DevOps delivers what the business needs the
most by properly balancing optimization and innovation. Business goals have
to drive why IT transforms, which will in turn drive how IT transforms.

This book will categorize DevOps adoption plays as follows:

 ■ DevOps for optimization
 ■ DevOps for innovation
 ■ Scaling DevOps adoption for the enterprise
 ■ Driving DevOps transformation in the enterprise

It will include lessons learned, examples, success patterns, and anti-
patterns for each adoption play. Like a sports playbook, this book is designed
to deliver certain plays that can be executed for different scenarios and
situations—depending upon your organization’s current maturity and state—
when it comes to transforming to a high-performance application delivery
organization by adopting DevOps. An organization will need to take those
plays and execute them in a tactical manner, based on the projects and teams
that are adopting DevOps. Just as no battle plan ever survived contact with the
enemy, these plays will need to be executed with an action plan or a broader
adoption roadmap designed for each organization.

Furthermore, no organization is monolithic or homogenous in nature. Some
parts of the organization may be more mature in some areas, but less mature in
others. Some teams and groups may have already achieved agility and velocity,
whereas others may be experiencing tremendous cultural inertia, all within
the same organization, sometimes in the same building; they all need to work
together in order to get scale.

An organization may have an innovation lab that is using modern agile and
DevOps practices, while core systems teams may still be delivering in a rigid
waterfall manner. Thus, these patterns of adoption will apply differently to
different parts of the same organization and will need to be customized to
suit the needs of various teams. To help with this customization effort, this
book will also apply the technique of value stream mapping, used for decades
as a component of Lean practices, that can be used to develop a custom adop-
tion roadmap from these plays for an organization’s business goals, current
maturity, and capabilities.

Introduction xxvii

Disrupt or be Disrupted
We live in an era of massive change. In 1960, the average life expectancy
of a Fortune 500 company was 75 years. Today, the average lifespan is just
15 years and declining further. So what gives? You only have to look as far as
what is referred to as the Uber effect to understand why so many companies
fail. A company led by a founder who is not from the taxi industry, Uber dis-
rupted a centuries-old industry with the touch of a button on a mobile app;
they have made cab service part of the on-demand, service economy, where
consumers get what they want, when they want it, with no delays. New IT
capabilities—accelerated by the intersection of new approaches like Agile
and DevOps and technologies like cloud and microservices—are allowing
startups armed with no more than services on a cloud and a mobile app to
Uber large, established organizations with massive IT investments, valuable
infrastructure, and experienced people.

NOTE The fastest-growing transportation company in the world does not
own any vehicles (Uber); the fastest-growing hospitality company providing
living space for rent owns no property (Airbnb); the fastest-growing media
company in the world produces no media (Facebook); the largest encyclo-
pedia in the world has no staff writers (Wikipedia). Disruption is real.

So, ask yourself, is your organization a disruptor or a disruptee? The real-
ity is, most organizations are the latter, putting IT organizations under more
pressure today than ever before. Whether it’s the fear of being Ubered by the
competition or business demands to pick up the pace, IT organizations face
a balancing act of ensuring the optimized operation of core applications and
of being innovative. However, the truth is, innovation and maintaining the
efficiencies of legacy systems can co-exist. While the prospect of competing
with born-on-the-web companies like Uber and Airbnb may seem daunt-
ing, adopting DevOps at scale across your organization can enable your IT
team to become more agile, efficient, and innovative. Adopting DevOps can
put your IT in a position to become the enabler of change at your organization
so it can fend off the disrupters; this in turn allows it to become the enabler
that lets your organization become the disrupter. In today’s technology-
driven world, IT capabilities have become the key differentiators between
the disrupter and the disrupted.

Introductionxxviii

Defining Devops
Before I begin to delve into the core capabilities and practices that you need
to adopt and the various plays you need to execute in order to adopt DevOps
in an organization, it is essential that you understand the definition of the
term DevOps.

DevOps, like any new technology or tech-related movement that is adopted
in industry, has become an overloaded buzzword. Everyone talks about it,
not everyone knows what it is all about, and worst of all, many of those
who claim to do it are really doing a terrible job. There are some excellent
examples of companies that have excelled and are at the leading edge of the
DevOps movement—the often-cited Etsy, Flickr, Facebook, and Netflix come
to mind. But even here, there is contention and debate as to what is truly the
best approach to DevOps. Netflix says what they do is NoOps, with develop-
ers taking over Ops responsibilities. Yet others counter that such a situation
would lead to anarchy.

Such debate is to be expected as the industry refines what DevOps is as it
evolves. As I will discuss at length in this book, there are different approaches
to adopting DevOps, and each organization should look at adopting the right
capabilities and practices of DevOps, based on their individual risk-value and
business drivers balance. In fact, this adoption needs to start at a project level
and then be scaled across the enterprise, leveraging techniques that will be
described in this book.

As I mentioned previously, there are as many definitions of DevOps, or at
least opinions of what DevOps really is, as there are blogs and tech “experts.”
There is the perspective of DevOps where the developer is king; DevOps where
continuous delivery is the driver; DevOps where it all hinges on the cloud and
one cannot have true DevOps without a cloud; and DevOps where DevOps
equals microservices. So, let’s start with the definition listed on a (fairly) neu-
tral source—Wikipedia (Wikipedia, 2016):

DevOps (a clipped compound of development and operations) is a
culture, movement or practice that emphasizes the collaboration and
communication of both software developers and other information-
technology (IT) professionals while automating the process of soft-
ware delivery and infrastructure changes. It aims at establishing a
culture and environment where building, testing, and releasing soft-
ware, can happen rapidly, frequently, and more reliably.

Introduction xxix

It is important to note that the Wikipedia definition has also evolved over
time, as DevOps has matured. For comparison, here is the definition listed
on Wikipedia in 2013:

DevOps (a portmanteau of development and operations) is a soft-
ware development method that stresses communication, collabora-
tion and integration between software developers and Information
Technology (IT) professionals. DevOps is a response to the interde-
pendence of software development and IT operations. It aims to help
an organization rapidly produce software products and services.

This evolution of the Wikipedia definition is indicative of the evolution of
DevOps and how the industry views DevOps. Other than the replacement of
the esoteric portmanteau, which had everyone looking it up on Dictionary.com,
the key points to note are as follows:

 ■ Replacement of software development method by culture, movement,
or practice.

 ■ Addition of the reference to automation.
 ■ Change of the end-goal from “rapidly producing software products and

services” to “building, testing, and releasing software, which can hap-
pen rapidly, frequently, and more reliably.” Thus, the goal of DevOps
changes from being just speed, to being speed, reliability, and quality.

Of course, I would be remiss not to mention the most concise definition
of DevOps ever written; this was seen on a T-shirt at the O’Reilly Velocity
Conference in 2013:

DevOps—taking the SH out of IT!

Who Is this book For?
A sports team does not just have the players who take to the field on game
day; it also has everything from coaches, assistant coaches, team management,
team executives, trainers, doctors, nutritionists, physiotherapists, equipment
managers, all the way to ball carriers and water servers. All are essential, and
all need to excel in their roles and how they work together as a team, for the
team to perform at its highest capacity. The same way, DevOps is not just about

Introductionxxx

development and operations practitioners. It requires all the stakeholders in the
application delivery pipeline to transform how they work, how they collaborate
and communicate, how they work together like a high performance team.

This book is for all the team members in an organization who are stake-
holders in the application delivery pipeline—from line of business owners,
to analysts, architects, designers, developers, testers, quality assurance (QA)
practitioners, automation engineers, infrastructure engineers, operations prac-
titioners, database administrators, system administrators, documentation writ-
ers, project managers, product owners, all the way to c-suite executives. These
roles may vary by organization, and many will need to evolve and transform
what they do and how they do it as the organization adopts DevOps. This book
is designed to benefit them all.

The application of each play discussed will impact each stakeholder role
 differently—some will see significant change in their role and how they interact
with others, and some will see none at all. Just all the ball carriers and water serv-
ers are typically not impacted by which plays a team runs, but they are still stake-
holders who can impact team performance if they do not perform as expected.
The same way certain roles are supporting roles in IT too. Other roles, like key
stakeholders who directly work with artifacts and processes that are a part of
the application delivery pipeline, will benefit significantly from the plays in the
book. They are the players and the direct supporting staff who play the game or
support those who do, enabling them to perform at peak performance capacity.

Chapter 1 is an overview of DevOps. It documents the evolution of DevOps from
its origins to today. It defines and describes all the common practices and capabili-
ties that make up DevOps. It sets the stage with the broad definition of DevOps and
of a DevOps transformation, which are used as the premise of this book.

Chapter 2 is focused on the leaders on the team: the coaches, the team
captain, the senior players who form the core of the team. It focuses on how
to assess the playing conditions and the competition to develop and select the
right set of plays—the playbook for the team. It is for the IT management, proj-
ect and program managers, product owners, team leads, senior practitioners,
DevOps coaches, and anyone who aspires to be one of them.

Chapter 3 provides guidance on how to build a business case for a DevOps
Transformation, allowing for the right sponsorship and investments to ensure
success.

Chapters 4 through 6 are the actual plays. They are categorized as follows:

 ■ Chapter 4—DevOps Plays for Optimization: Plays to optimize the appli-
cation delivery pipeline to maximize efficiency, by eliminating waste

xxxiIntroduction

 ■ Chapter 5—DevOps Plays for Innovation: Plays to make the application
delivery pipeline fast and agile to support the ability to experiment, to
drive innovation

 ■ Chapter 6—DevOps Plays for scaling DevOps in the enterprise: Plays
to scale DevOps adoption across the organization, an organization
that is large, complex, distributed and is not homogenous in its
maturity

Chapter 7 is a chapter dedicated to the executive leadership driving the
DevOps adoption. Like the general managers and executives of a sports teams,
executives make the executive decisions and set the direction and culture of
the organization. They are the ones who need to make the decision to under-
take a DevOps transformation. They need to make the necessary investment
and sponsor the transformation. They will need to know how to make the
business case and determine the return on investment for such a transfor-
mation. They need to drive the transformation, from the front, across the
enterprise.

The book also has one appendix. It is an example of a DevOps Transformation
adoption roadmap, developed for a fictitious bank by delivering a value stream
mapping exercise.

The book purposefully has tried to remain tool and platform agnostic.
While several examples of tools, platforms, and technologies—both com-
mercial and open source—are made throughout the book, they are done
to as current examples of tooling and platforms available in the market to
enable automation. Tools are necessary to automate processes, making them
fast, repeatable, scalable, and error free. However, tools and platforms are
continuously evolving and getting replaced by newer and better ones. It is
hence a futile effort to recommend or even document available tools and
platforms. The goal is to highlight capabilities, while remaining as tool and
platform agnostic as possible to remain relevant even as tools and platforms
available evolve.

the sports analogies

Individual commitment to a group effort—that is what makes a team work, a
company work, a society work, a civilization work.

—Vince Lombardi, legendary American football coach

xxxii Introduction

There is nothing that transcends culture, language, and geographic bor-
ders than sports. If you have any doubts, just watch the reruns of the recently
concluded Olympics in Rio. Analogies from sports are also very relevant to
application development and delivery, as they are both team events. While
developing or delivering a new application or service may not require the
physical conditioning an Olympics gold medalist does, they do require the
leadership, communication, collaboration, and trust that any team sport needs.

I also have a personal passion for sports. Right
from my childhood I grew up in a household
that had a love for sports. My maternal grand-
father was an Olympian and national sports fig-
ure in India. He played for the Indian National
Hockey team in his youth and later was a sports
executive with the Indian National Football
(Soccer) team at the 1952 Helsinki Olympic
Games. He also had the opportunity to run with
the Olympic torch for the 1964 Tokyo Olympics,
as the torch passed through India. He remained a
sports executive for domestic soccer tournaments
for several decades after that, including when I
was a child. Growing up with an Olympic torch
in the family home gives one a high respect for
sportsmen and women.

In the book I have taken examples, quotes, and
players’ and coaches’ experiences from multiple
sports and mapped them to the Plays of DevOps
Adoption. The parallels are intended to make
the plays more relatable and understandable and
hopefully the book more interesting to read.

Companion Website
This books comes with a companion website where I will continue to post
updates and new content, including case studies, presentations, videos, and
outtakes from the book. Check it out at http://devopsadoptionplaybook.com.

Major lachhman singh
running with the ‘64
tokyo olympics torch
(source: singh Family
Personal Collection)

http://devopsadoptionplaybook.com

Chapter 1

DevOps: an Overview

rant Of a DevelOpment manager

So, the developer completes writing code for a new service by Monday
afternoon. She builds the code, runs unit tests, and delivers the code to the
integration stream so it gets included in the continuous integration (CI)
build. To get her service tested, before leaving for work, she opens a ticket
with the Quality Assurance (QA) team.

Tuesday morning, the QA team comes in and sees the ticket assigned to
them. A tester gets the ticket and emails the developer asking for the deploy-
ment instructions. As there is no deployment automation, the developer
responds saying she will deploy the service to the QA environment herself.
Tuesday afternoon, they get on a conference call to deploy the code. The
developer discovers that test environment is not compatible with her code.
They need a new environment. Tuesday evening, the tester opens a ticket
with the operations (Ops) team for a new environment, with the new specs.

Wednesday morning, the Ops team assigns the ticket to an engineer
who looks at the specs and sees a firewall port change. As he leaves for
lunch, he opens a ticket with the security team to approve the port change.
Wednesday afternoon, the security team assigns the ticket to a security
engineer, who approves the change. Wednesday evening, the Ops engineer
receives the approval and starts building the new environment. He needs
to manually build new Virtual Machines (VMs), with an Operating System
(OS), app server, database, and web server.

Thursday morning, the server build is done, and the ticket is closed. The
tester emails the developer again to deploy the new service. The developer
deploys the service, and the tester starts walking through the test scripts,
which pass. He now needs to run a regression test but needs additional test
data to re-run tests. Thursday afternoon he opens a ticket to request new
test data with the production support team.

continued

The DevOps Adoption Playbook: A Guide to Adopting DevOpsin a
Multi-Speed IT Enterprise
By Sanjeev Sharma
Copyright © 2017 by John Wiley & Sons, Inc., Indianapolis, Indiana

DevOps Adoption Playbook2

DevOps: Origins
The DevOps movement began with a seminal talk given by John Allspaw
and Paul Hammond (both at Flickr/Yahoo at that time) at the O’Reilly
Velocity 2009 conference. The talk was entitled “10+ Deploys Per Day: Dev
and Ops Cooperation at Flickr.”1 Ten deploys a day was considered unprec-
edented. Their approach was eventually referred to as DevOps by Patrick
Debois, when he organized the first DevOpsDays event in Ghent, Belgium,
the same year.

While the name caught on and started getting tremendous interest, the trac-
tion was initially limited to startups, more specifically, organizations deliver-
ing web applications. These applications were created by developers (the Dev)
who typically delivered changes and updates to their web apps in a very rapid
manner. The main hurdle they faced was that of operations (the Ops), which
were slow in deploying those changes, as they had rigid and rigorous change
management processes.

The goal of the DevOps movement was to address this impedance mismatch
between the Dev and Ops teams; to bridge the chasm between them; and to
foster more communication, collaboration, and trust. At its heart, it was a cul-
tural movement, focused on changing the cultural differences between Dev and
Ops, along with automation to make application delivery faster, more efficient,

Friday morning, the production support team assigns a database analyst
(DBA) to extract test data from production. But now it’s Friday afternoon.
Everyone knows DBAs don’t work on Friday afternoons. Monday morn-
ing, the tester gets the test data from the DBA. It takes him 20 minutes to
run the regression tests and discover a defect. He returns the ticket to the
developer—a full week after the code was written and built. A full week of
coding has now been done on top of that code, not knowing it was defec-
tive. We are now another week behind.

What’s scary about this story is that when I tell it to my peers in other
companies, they shake their heads not in empathy but in amazement as to
how efficient we are compared to them!

—Yet another frustrated development manager

1 http://conferences.oreilly.com/velocity/velocity2009/public/schedule/
detail/7641

continued

http://conferences.oreilly.com/velocity/velocity2009/public/schedule/detail/7641

Chapter 1 DevOps: an Overview 3

and eventually, continuous. In 2010, Jez Humble, then at ThoughtWorks, took
DevOps to practitioners throughout the industry with his book Continuous
Delivery, codifying some of the practices that make up the core of DevOps
 and making DevOps adoption tangible and available to all.

Still, DevOps was seen as something done by the unicorns—the startups
and the upstarts, organizations at the cutting edge of innovation, without
large, complex legacy systems to maintain. It had not yet gone mainstream
with the large enterprises. However, these large enterprises were seeing
what the startups were achieving with DevOps, and were trying to deter-
mine how to adapt DevOps for their own needs. Organizations like IBM
were beginning to dabble with deployment automation, and with visual
architecting of environments, and even stitching these two capabilities
together. At the same time, well-established companies in the build automa-
tion space, like UrbanCode, started pivoting into DevOps with the release
of uDeploy, thus establishing a new category of tools to enable continuous
delivery. Other companies in the automation space, like Nolio, joined in
with their own competitive offerings. In parallel, coming from the Ops
and infrastructure as code side, companies like Opscode (now called Chef)
and Puppet Labs were gaining traction (Opscode with Chef, and Puppet
Labs with Puppet).

The real growth for DevOps into large enterprises began in 2012, with
companies like IBM jumping into the fray with their first, albeit short-lived,
continuous delivery experiment with SmartCloud Continuous Delivery.
Several consulting firms, like ThoughtWorks and IBM, also started to offer
consulting services for organizations, especially large enterprises looking to
adopt DevOps, and helping to translate what worked for the unicorns so that
it could work for enterprises. IBM and CA Technologies announced their
formal entrance into the DevOps world by acquiring UrbanCode and Nolio,
respectively (and coincidently on the same day in April 2013). However, the
biggest turning point for the DevOps movement since its inception came
later, in 2013, with the publication of Gene Kim’s book, The Phoenix Project.
This book, inspired by and modeled after the historic The Goal by Eliyahu
M. Goldratt, became the must-read book for the modern-day implementation
of Lean practices and Goldratt’s Theory of Constraints in the IT world, just as
Goldratt’s book had been a few decades earlier for the manufacturing world.
Kim truly took DevOps mainstream with his book, as well as subsequent work
he has done with the State of DevOps Report that he publishes every year, with
Jez Humble and Puppet Labs.

DevOps Adoption Playbook4

DevOps: roots
Where does DevOps come from? While I have already outlined its origin story,
the true roots of DevOps predate Allspaw, Debois, Humble, and Kim by almost
a century. You have to go way back to the 1910s and look at the origins of the
Lean movement.

The Lean movement started in manufacturing with Henry Ford and his
adoption of Lean for flow management in the Model T production lines. This
work was further extended, refined, and codified by Kiichiro Toyoda and
Taiichi Ohno at Toyota starting in the 1930s and really accelerating after
World War II. Their work was both refined and influenced by Dr. William
E. Deming in the 1950s, who proposed the Plan–Do–Check–Act (or Adjust)
cycle (PDCA), to continuously improve manufacturing quality. Based on this
core approach, the Lean manufacturing movement aimed to both contin-
uously improve the product being manufactured and reduce waste in the
manufacturing process. Lean was further refined in the works of James P.
Womack and Daniel T. Jones when they published The Machine that Changed
the World in 1990 and (required reading for everyone) Lean Thinking in 1996
(Lean.org, 2016).

Deming On lean thinking anD COntinuOus imprOvement

Dr. W. Edwards Deming taught that by adopting appropriate prin-
ciples of management, organizations can increase quality and simul-
taneously reduce costs (by reducing waste, rework, staff attrition and
litigation while increasing customer loyalty). The key is to practice
continual improvement and think of manufacturing as a system, not
as bits and pieces.

—Dr. Deming’s Management Training (Deming, 1998)

In 2001 came Agile, a group of 17 thought leaders, including Alistair
Cockburn and Martin Fowler, who created The Agile Manifesto.2 The core
principles of the manifesto were to get away from the rigid, waterfall-oriented,
documentation-heavy world of software development, which was resulting in
most software development projects being late, over budget, or abject failures.

2 http://www.agilemanifesto.org

http://www.agilemanifesto.org

Chapter 1 DevOps: an Overview 5

Their goal was to move to an iterative approach where there was constant
interaction with the customer, end-user, or a surrogate who represented them.
They wanted to move away from measuring progress through major rigid
milestones such as Requirements Documentation, which brought code no closer
to being delivered than the day before. Other goals were to use real running
code (working software) as the true measure of progress; to look at planning
as being adaptive to real progress; and to create requirements that did not
need to be written in stone up front, but would evolve and be refined as the
applications were being developed.

Agile was refined with the development of methodologies like XP, Scrum,
and, more recently, Scaled Agile Framework or SAFe. Today, Agile is used
by both large and small organizations to deliver projects of all sizes and
technologies.

Agile was the precursor to, and became the core driver for, the need for
DevOps. As developers started delivering code faster, that code needed to
be tested faster; it also needed to be deployed to Dev and test servers, and
eventually to production, more often. The Ops teams were not set up for this,
which resulted in a major bottleneck being created at the Dev-to-test handoff,
due to lack of availability of the right test environments as and when needed
and, more importantly, at the hands of production at release time. Production
release remained a major undertaking, with “release weekends” that typically
lasted beyond the weekend.

the release WeekenD

I remember when I was working as a developer at a financial services insti-
tution in the early ’90s. (We called them banks back then.) On release
weekends, much to my chagrin, we were asked to show up at work on
Friday mornings with our sleeping bags in hand. We were expected to
stay there through the weekend. There were multiple conference rooms set
up with conference call bridges open to get every team in communication
with each other. One conference room was set up like a war room with the
project leader coordinating all the stakeholders off a massive spreadsheet.
The management did their best to create a party atmosphere, but that faded
right after the first few hours. We were communicating with the Ops people
for the first time. We were handing off our code to people who had never

continued

DevOps Adoption Playbook6

The rapid development of code in short iterations amplified the need for bet-
ter collaboration and coordination between Dev and Ops teams. The frequent
failure of release to production exposed the need for providing developers with
access to production-like environments. The major inefficiencies in the entire
process were exposed by making just one part of the process—developing
code—more efficient, which created major bottlenecks with test and Ops. If
you think of the application development and delivery process as an assembly
line in a factory, speeding up an operation of just one of the stations to increase
the number of widgets it produces does not help the overall delivery speed if
the downstream stations are still operating at a slower speed. It just creates
more of a backlog for them. (See Figure 1-1.) This was not just a challenge for
Ops, but for all the stakeholders in the delivery life cycle.

seen the code before. They were deploying code into environments we
had no visibility into, using scripts and tools we had no familiarity with.
It would be chaos the whole weekend. Lots of delivered food and stale cof-
fee, and nothing seemed to work as planned. And the traders we supported,
they were smart. They always planned their team outing or picnics on the
Monday following. They knew nothing would work. And they were right.
Fortunately, we only did this twice a year. Even more fortunately for me
personally, I worked there for only two releases.

Figure 1-1: Delivery pipeline bottlenecks

1 per min 1 per min

4 per min 1 per min

4 per min 4 per min

The focus now turned toward minimizing cycle time—the time from the
inception of a requirement, or user story, to the time that capability is in
the hands of the customer, or at least is integrated, tested, and ready to be
deployed to the customer. This resulted in the development of the two core

continued

Chapter 1 DevOps: an Overview 7

capabilities of DevOps: continuous integration (already a core competency
of Agile) and continuous delivery. I will discuss both capabilities in detail
shortly. This extension of Agile beyond the Dev-test cycle—including the
Ops team in the delivery cycle, as a part of the process, and not in a separate
silo that was not engaged until the code was ready for release—became the
core principle of DevOps.

addressing Dev versus Ops
Dev and Ops have traditionally lived in different silos, with misaligned, even
opposing priorities. Development (Dev) is tasked with creating innovation
and getting it into the hands of users as soon as possible. Operations (Ops) is
tasked with making sure that the users have access to a stable, fast, and respon-
sive system. While Dev and Ops’ ultimate goal is to make the user a satisfied
(and potentially a happy, paying) customer of the systems they provide, their
views of how to do it tend to be inherently antithetical. No developer wants
to intentionally produce a buggy system that would cause the application to
crash while a user is using it. No operations person wants developers to not
produce updates with new, exciting features and capabilities. It is how they
go about it that is different. This is a classic symptom of what is referred to
as water-Scrum-fall (Forrester, 2011). Developers want, and are expected
to produce, new features quickly. Operations want, and are expected to pro-
duce, a stable system, at all times.

Dev versus Ops
Before the advent of Agile, in the purely waterfall-oriented paradigm, when
developers and operations lived in truly isolated worlds, these oppos-
ing priorities were not that much of an issue. Developers and operations
worked on a schedule that was marked by limited interactions, only at
release times. Developers knew when the release date was, and they could
only release new features then. If they did not create a new feature by the
release date, they would have to wait for the next release train. Operations
knew when the train would come to town. They would have enough time
to test the new features before deploying them, and they could take days
(weekends) to deploy them out to customers. For large systems, they could
even deploy in a phased manner spread over long periods of time. Stability
was maintained.

Agile changed all that. With continuous integration (CI), developers were
now deploying their features daily. There was no release train to wait for; it

DevOps Adoption Playbook8

was a conveyer belt (pipeline) that ran all the time. The developers now wanted
their features up and running—in the Dev environment, in the test environ-
ment, and finally in production (Prod)—at the same frequency at which they
produced and integrated them. They wanted Ops to accommodate all these
new releases.

Ops now had to deal with not one release every so often but a continuous
barrage of CI builds. These builds may or may not have been deployment-
ready, but they had to be managed by Ops and deployed to test, and eventually
production, environments. Ops now cared more about quality. Developers and
testers cared about how quickly they could get Dev and test environments
and whether or not those environments were production-like. They did not
want to test the code they were delivering on environments that did not func-
tion and behave like production environments. Thus, Ops could no longer
take days to provision and configure new environments—for Dev, test, and
eventually Prod. They had to do all of this while still maintaining stability
and reliability of production systems.

CyCle time?

If you have two-week Scrums but it takes three weeks to get a new test
server, how long are your Scrums?

Dev and Ops
The solution to this battle between Dev and Ops is what DevOps addresses:
to achieve the balance between innovation and stability and between speed
of delivery and quality. To achieve this, both Dev and Ops need to improve
how they operate and align.

The Dev View The previous section may give the impression that Ops
needs to change more than Dev, but Dev also needs to make several changes:

 ■ Dev needs to work with Ops to understand the nature of the production
systems their applications will be running on. What are the standards
for the production systems (environment patterns) and how should
their applications perform on them? Within what constraints do the
applications need to operate? Dev now needs to understand system and
enterprise architectures.

Chapter 1 DevOps: an Overview 9

 ■ Dev needs to get more involved in testing. This means not just mak-
ing sure that their code is bug-free but also testing the application
to see how it will perform in production. This requires Dev to work
closely with Quality Assurance (QA) and to test their application in a
production-like system. (I’ll discuss production-like systems later in
this chapter.)

 ■ Dev also needs to learn how to monitor deployed applications and
understand the metrics Ops cares about. They need to able to decipher
how processes interact and how one process can cause another one to
slow down or even crash. They need to understand how changes to
their code will impact the entire production system and not just their
own application.

 ■ Dev needs to communicate and collaborate better with Ops.

The Ops View Ops needs to be able to provision new environments rapidly,
and they need to architect their systems to absorb rapid change.

 ■ Ops needs to know what code is coming and how it may impact their
system. This requires them to be involved with Dev, right from under-
standing requirements and system specs of the applications being devel-
oped. This process is referred to in Lean and DevOps as shift left. They
need to make sure that their systems can accommodate these applica-
tions as they are enhanced.

 ■ Ops needs to automate how they manage their systems. Rapid change
with stability cannot be achieved without automation. Automation will
allow not only rapid change but also rapid rollbacks, if something does
break.

 ■ Ideally, Ops needs to version their systems. This can only be done when
the infrastructure and all changes to it are captured and managed as
version-controlled code. Thus, they need to leverage infrastructure as
code or, even better, software-defined environments. (I’ll talk more
about that later in this chapter.)

 ■ Ops needs to monitor everything throughout the delivery pipeline,
whichever environment the Ops teams manage. They need to be able
to spot potential instability as soon as it happens.

 ■ Ops needs to communicate and collaborate better with Dev.

In a nutshell, Dev and Ops both need to be brought into the DevOps para-
digms. They both need to know that this is not going to be easy, or something

DevOps Adoption Playbook10

that can be achieved in a day. They need to plan for and work toward gradually
adopting the changes needed to achieve the promise of DevOps. They may never
get to—and in most cases should never get to—where Dev and Ops are one team,
but they need to understand that their roles will change as they adopt DevOps.
They need to change enough to work together and find the right alignment
between Dev and Ops that their organization needs and improve from there.

That being said, the gap between Dev and Ops is not the only inhibitor to
a fast cycle time in the delivery lifecycle. All the stakeholders in the delivery
lifecycle need to communicate and collaborate better.

The Business View Let’s look at the business view. At the end of the day,
it is the business’s requirements that IT is delivering through the applications
and services delivered. What does the business (lines of business to be more
precise) need?

 ■ Business needs visibility into the status of what is being delivered by IT.
Are they on time and on budget to deliver the applications and services?

 ■ Business needs the application delivery teams to provide feedback on
how the clients and end users are utilizing the applications and services
being delivered. Are they able to get the business value as expected by
the business?

A more detailed analysis on the business’s point of view and expectations
of IT, and how DevOps helps the business will be discussed in detail in sub-
sequent chapters.

DevOps: practices
Much has been written in books, and even more in blog posts, about the
capabilities that make up DevOps. Several thought leaders have divided these
practices into various categories, and in some cases even with different names.
IBM lists several such practices, which are found under the following broad
categories:

 ■ Think
 ■ Code
 ■ Deliver
 ■ Run
 ■ Manage

Chapter 1 DevOps: an Overview 11

 ■ Learn
 ■ Culture

This taxonomy comes from the IBM Garage Method,3 a new methodology
for adopting DevOps focused on delivering Cloud Native and Hybrid Cloud
hosted applications.

There are two key capabilities of DevOps at its core: continuous integration
and continuous delivery. Without these two capabilities, there is no DevOps,
and they should be considered essential to DevOps adoption, with all others
being extensions, or supporting capabilities. These two concepts focus on
minimizing cycle time. Let’s revisit the definition of cycle time.

NOTE Cycle time: The time from the inception of a requirement or user
story to when that capability is in the hands of the customer, or at least is
integrated, tested, and ready to be deployed to the customer.

Continuous integration
Delivering a software application or system today involves multiple teams of
developers working on separate components of the application. Typically, the
completed application also needs to interact with other applications or services
to perform its functions. Some of these external applications or services may
be legacy applications that exist in the enterprise, or they may be external
third-party services. There is, as a result, an inherent need for developers to
integrate their work with components built by other development teams and
with other applications and services.

This need makes integration an essential and complex task in the software
development lifecycle. The process of doing this at a regular cadence is com-
monly referred to as continuous integration, and it is a key practice from Agile.
In traditional development processes, integration was a secondary set of tasks
conducted after the components (or sometimes the complete application) were
built. This sequence was inherently costly and unpredictable, as the incom-
patibilities and defects that tend to be discovered only during integration
were discovered late in the development process. The result was typically a
significant increase in rework and risk.

The Agile movement introduced a logical step to help reduce this risk by inte-
grating components continuously (or as continuously as possible). In this step,

3 https://www.ibm.com/devops/method/

https://www.ibm.com/devops/method/

DevOps Adoption Playbook12

developers integrate their work with the rest of the development team regularly
(at least daily) and test the integrated work. In the case of enterprise systems,
which span multiple platforms, applications, or services, developers also integrate
with other systems and services as often as possible. An example of Continuous
Integration across multiple teams and components is shown in Figure 1-2.

Figure 1-2: Continuous integration

Component
team build

Component
team build

Integration
build

These steps to integrate results can lead to early discovery and exposure
of integration risks. In the case of enterprise systems, they can also expose
known and unknown dependencies related to either technology or sched-
uling that may be at risk. As these practices have matured, some organiza-
tions have adopted continuous integration practices that developers follow
every time they check in code. In the most mature organizations, continu-
ous integration has led to capabilities for continuous delivery in which the
code and components are not only integrated but are also delivered to a
production-like environment for testing and verification. I’ll discuss this in
the next section.

The demands placed by business and customers on development organiza-
tions have driven the wide adoption by development teams of Agile develop-
ment practices. These practices are aimed at reducing the gap between the
business (or the customers) and the development teams. They work primarily
in three ways:

 ■ By breaking the development effort into small chunks of work that can
be completed in time-bound iterations. This allows developers to iden-
tify and resolve risk earlier than when they undertake entire projects
or larger portions of projects.

 ■ By including contact with the end user or a surrogate representing the
user into the development iterations. This helps give developers a better

Chapter 1 DevOps: an Overview 13

understanding of the user’s needs and allows for changing needs to be
more quickly accommodated.

 ■ By releasing software at the end of every iteration. This allows devel-
opers to demonstrate regularly what they have built in order to obtain
user feedback.

As described, continuous integration is one of the tenets of such Agile
development. It allows for developers to integrate their software components
with components that are being developed by others—either internally or
externally—on a regular basis, to allow for early identification of risks.

Practices of Continuous Integration
Martin Fowler, a signatory of what is known as the Agile Manifesto, is a thought
leader in the development of continuous integration processes. He has broken
down the concept into ten practices, which are described here.

 1. Maintain a single-source repository. Whether managing code or any
file, it is critical to use version management tools to manage the source
base that allows multi-user access and streaming, or branching and
merging, and that allows multiple developers in distributed locations
to work on the same set of files. With any multi-platform develop-
ment effort, using a common, cross-platform, single-source repository
becomes even more important. If such a repository is not implemented
across platforms, any platform left isolated (System z or Mobile, for
example) will not be able to participate in continuous integration prac-
tices. Integration with any work conducted on the isolated platform will
become an after-effort, waterfall-style integration.

This transition to a modern source-code repository represents a sig-
nificant change for legacy system development teams that may have
been using the same capability for years. However, a single source code
management (SCM) tool is critical to allow the management of all arti-
facts, help break down the silos, and remove a key bottleneck.

 2. Automate the build. Automating the build is what makes continuous
integration continuous. Additionally, it should be possible to coordinate
the build across multiple platforms, when required.

 3. Make your build self-testing. Just as builds need to be automated,
so does the testing. The goal of continuous integration is not only to
integrate the work of teams but also to see if the application or system
being built is functioning and performing as expected. This requires

DevOps Adoption Playbook14

that a suite of automated test scripts be built for unit-test level and for
the component and application level. In true continuous integration,
developers should be able to start an integration build by kicking off the
right test suite when they commit the code. This process requires that
the build scripts include the capability to build the software if needed,
provision the test server, provision the test environment, deploy the
built software to the test server, set up the test data, and run the right
test scripts.

The requirement to have the environments to do the build, deploy
it, and do the automated testing at any time helps improve the quality
of the final code. This requires availability of system resources, the
willingness to run large numbers of automated tests on a regular basis,
and the development of the automated tests.

 4. Ensure that everyone commits to the mainline every day. The goal
of having every developer, across all components and all development
environments, commit their code to the mainline of their development
streams every day is to help ensure that integrations remain as simple
as possible. Even today, many developers work independently on their
code changes until the final build, which is when they realize their work
is impacted by the work of other developers. This can lead to delays
in releasing functions or to last-minute changes that have not been
properly tested being deployed into production. Regular integration of
code can help ensure that these dependencies are identified sooner so
the development team can handle them in a timely manner and without
time constraints.

 5. Ensure that every commit builds the mainline on an integration
machine. This is a second part of Practice 4. Making sure that every com-
mit is built and that automated regression tests are run can help ensure
that problems are found and resolved earlier in the development cycle.

 6. Keep the build fast. Virtually nothing impedes continuous integration
more than a build that takes extremely long to run. Builds with modern
tools are generally fast due to the standard practice of building only
changed files.

 7. Test in a clone of the production environment. Testing in an environ-
ment that does not accurately represent the production system leaves
a lot of risk in the system. The goal of this practice, then, is to test in a
clone of the production environment. It is not always possible, however,
to create a clone of an entire multi-server environment just for testing.

Chapter 1 DevOps: an Overview 15

It is even harder to create a clone environment with other workloads
running on it.

Instead, this practice requires the creation of what is known as a
production-like environment. In terms of specifications, this environ-
ment should be as close to the production environment as possible. It
should also be subject to proper test data management. A test environ-
ment should not contain production data because in many cases that
data needs to be masked. Proper test data management can also reduce
the size and complexity of the test environment.

A complex system with multiple components—both pre-existing
(such as other services and applications) and new components being
 developed—also creates challenges. All the components, services, and
systems that applications need to access and interact with may not be
available for running tests. This may occur for multiple reasons: the com-
ponent, service, or system may not have been built yet; it may have been
built but is available only as a production system that cannot be tested
with non-production data; or it may have a cost associated with its use.
For third-party services, for example, cost can become a major issue.

 8. Make it easy for anyone to get the latest executable. Anyone associ-
ated with the project should have access to what is built and should be
provided with a way to interact with it. This allows validation of what
is being built against what was expected.

 9. Make sure everyone can see what is happening. This is a communication-
and-collaboration-related best practice, rather than one related to
continuous integration. However, its importance to teams practicing
continuous integration cannot be discounted. Visibility to the progress
of continuous-integration builds via a central portal or dashboards can
provide information to all practitioners.

This can boost morale and help build the sense of working as a
team with a common goal. If challenges occur, visibility can provide
the impetus for people to step in and help other practitioners or teams.
Visibility via a common team portal is especially important for teams
that are not collocated—but it is also key for collocated teams and
for cross-platform teams that work on different components of a proj-
ect. This visibility should extend all the way back to the Business. As
described in the earlier section on the Business View, visibility into
the current status of the applications and services being delivered is a
critical need of the business.

DevOps Adoption Playbook16

 10. Automate deployment. Continuous integration naturally leads to the
concept and practice of continuous delivery—the process of automat-
ing the deployment of software to test, system testing, staging, and
production environments.

Continuous Delivery
Continuous delivery simply involves taking the concept of continuous inte-
gration to the next step. Once the application is built, at the end of every con-
tinuous integration build, it is delivered to the next stage in the application
delivery lifecycle. It is delivered to the Quality Assurance (QA) team for testing
and then to the operations team for delivery to the production system. The
goal of continuous delivery is to get the new features that the developers are
creating out to the customers and users as soon as possible. Now, all builds
that come out of a continuous integration effort do not need to go to QA; only
the “good” ones with functionality that is at a stage of development where it
can be tested need to go to QA.

Similarly, all the builds that go through QA do not need to go to production.
Only those that are ready to be delivered to the users, in terms of functionality,
stability, and other non-functional requirements (NFRs) should be delivered
to production. To test whether the builds coming out are production-ready,
they should be delivered to a staging or test area that is production-like. This
practice of regularly delivering the application being developed to QA and
operations for validation and potential release to customers is referred to as
continuous delivery.

Continuous delivery requires the creation of a delivery pipeline (as shown
in Figure 1-3), with the core capability that automates the delivery pipeline
being continuous delivery. As continuous integration produces builds at a
steady pace, these builds need to be rapidly progressed to other environments
in the delivery pipeline. Builds need to be deployed to the test environment
to perform tests, to the integration environment for integration builds and
integration testing, and so on, all the way to production. Continuous delivery
facilitates deployment of applications from one environment to the next, as
and when deployment is needed.

Continuous delivery, however, is not as simple as just moving files around.
It requires orchestrating the deployments of code, content, applications, mid-
dleware and environment configurations, and process changes, as shown in
Figure 1-4.

Chapter 1 DevOps: an Overview 17

With regard to continuous delivery, there are two key points to remember:

 ■ It does not mean deployment of every change out to production, a
process commonly known as continuous deployment. Instead, continu-
ous delivery is not a process but rather a capability to deploy to any
environment, at any time, as needed. (I will discuss this more in the
next section.)

 ■ It does not always mean deploying a complete application. What is
deployed may be the full application, one or many application com-
ponents, application content, application or middleware configuration
changes, or the environment to which the application is being deployed.
It may also be any combination of these.

Two of the ten practices of continuous integration form the link to, and the
necessity for, continuous delivery:

 ■ Testing in a clone of the production environment
 ■ Automating deployment

Figure 1-3: a delivery pipeline

Development Source code
management

Build Package Deploy

• Applications
• Middleware
• Databases

Configure >

Test Stage Production

Figure 1-4: Continuous delivery

Dev Environment
Continuous Integration

Unit Test
Functional

Test

Performance
Test

Acceptance
Test

Build

Build

Build
Continuous Monitoring

Test Environment Stage Environment Prod Environment

Continuous Testing

Continuous Delivery

DevOps Adoption Playbook18

While testing in a clone of the production environment (the seventh prac-
tice) may be a testing practice, it also requires continuous delivery capabili-
ties to deliver the new build to the clone test environment. This delivery may
require provisioning the test environment and any virtualized instances of
services and applications. It may also require the positioning of relevant test
data, in addition to the actual deployment of the application to the right
test environment.

The tenth practice of continuous integration, automating deployment, is
the core practice of continuous delivery; it is not possible to achieve con-
tinuous delivery without automation of the deployment process. Whether
the goal is to deploy the complete application or only one component or
configuration change, continuous delivery requires having tools and pro-
cesses in place to deploy, as and when needed, to any environment in the
delivery pipeline.

Practicing continuous delivery also tests the actual deployment process.
It is not unusual for organizations to suffer severe issues when deploying an
application to production (as I discussed earlier). However, it is possible to
uncover these issues early in the delivery lifecycle by automating the deploy-
ment process and validating it by deploying multiple times to production-like
environments in pre-production.

Continuous Delivery versus Continuous Deployment
In the past, companies like Flickr posted on their blogs4 how many deploys they
had so far in a particular day or week. Looking at an organization that deploys
to production 89 times in a week can be very intimidating. More importantly,
it begs the question, “What do you deploy to production 89 times in a week?”

This is a scenario that may actually keep some people away from adopting
DevOps practices, because they believe that they have to deploy every change to
production. That is certainly not the case. First, you need to understand what is
being deployed here, and second (and more importantly), you need to understand
that this is not applicable, necessary, or even feasible for every organization.

What Do You Deploy 89 Times a Week? When organizations say
they are doing double-digit deploys to production every day, it does not mean
that they are delivering dozens of new features or bug fixes every day! What
these companies have adopted is true and full-fledged continuous deploy-
ment. This means that every change by every developer works its way out

4 http://code.flickr.net

http://code.flickr.net

Chapter 1 DevOps: an Overview 19

to production. These may not be complete features; several such changes by
multiple developers, over a matter of days, may make up a complete usable
feature. They may not be visible to a customer at all; it is only after the
complete feature is available and tested that it becomes visible. Then, too,
it may be a part of an A-B test effort, so only a few customers will ever see
it. The deployment may also be a simple configuration or database schema
change that is never seen by anyone, but that changes some performance
or behavior. Yet another scenario is where the deployment involves a new
environment change and not an application change at all—an operating
system (OS) or middleware patch, an OS- or middleware-level configuration
change, a new database schema version, an entire new architectural topology
of nodes, and so on.

Such a process is not viable for many organizations. Some organizations
may have some (water-Scrum-fall like) requirements and policies that require a
manual approval process before deployment to production. Others may require
a segregation of duties, which mandates that the person to deploy to production
is a different person or team from the one that contributes to the development
of the deployable asset.

To Continuously Deploy or Not? There is still confusion among people
between the concepts of continuous delivery and continuous deployment.

Continuous delivery doesn’t mean every change is deployed to production ASAP. It
means every change is proven to be deployable at any time.

—Carl Caum (Caum, 2013)

This tweet by Carl Caum, in a simple (less than 140-character) sentence,
captures the essence of what should be done versus what may be done by an
organization. Going by this distinction, continuous delivery is a must, while
continuous deployment is an option. Having the capability to continuously
deploy is more important than actually doing it in a continuous manner out to
production (the key words here being to production). These terms are, unfor-
tunately, still used interchangeably by most people.

What is required is the tested and validated capability to deploy to any
environment in your delivery lifecycle—all the way out to production.
You may only continuously deploy to an environment before Prod (lower
environments)—for example, User Acceptance Testing (UAT), Pre-prod…, but
the environments you deploy to should be production-like, so you know, with

DevOps Adoption Playbook20

very high confidence, that the final deploy to production will work without
issues when you actually deploy to Prod.

What you continuously deliver should be every change to Dev and QA envi-
ronments and other (lower) non-production environments. What you finally
choose to deploy to Prod will typically be a full feature or set of features, or a
full application or service.

supporting practices
Other than the two core practices of DevOps—continuous integration and
continuous delivery (you are not doing DevOps without both being adopted)—
there are several supporting practices. These have been developed to support
and enable the two core practices. Following are some of these practices, which
are considered to be supporting but essential.

Infrastructure as Code

master Of the Ops universe

Imagine a seasoned operations engineer (neck beard and all). Over his
career, he has most certainly developed a toolkit of scripts that he can use,
with minor changes, to perform all his regular tasks of provisioning and
managing the plethora of environments he has seen and dealt with. When
it comes to configurations, he knows all the admin consoles he deals with
like the back of his hand. He can log in and make the exact tweaks to
application server configs that are needed to address the issues he is fac-
ing. For database-related issues, he knows exactly who to call and that the
DBA has mastered his end of the deal as well as he has his. He has things
down to a routine. He knows exactly when the next application release is
due. He knows when to expect the next update to the OS. He is the master
of his universe.

As systems have become virtualized and as developers have started practic-
ing continuous integration (CI), things have started to change. The number
of environments, and their instances that Ops engineers have to deal with,
have increased by several orders of magnitude. Developers no longer release
updates and new versions every few months; they are pumping out CI builds
daily—in fact, multiple builds a day. All of these builds need to be tested and

Chapter 1 DevOps: an Overview 21

validated. That requires new environment instances to be spun up, fast. These
builds also often come with configuration changes. Logging into consoles
to make each one of these changes individually is no longer a viable option.
Furthermore, the need for speed is critical. Developers’ builds are creating a
backlog, as the environments to even test them on are not available as needed.
Houston, we have a problem.

Let’s start by revisiting two concepts:

 1. Cycle time. Cycle time is defined as the average time taken from when
a new requirement is approved, a change request is requested, or a bug
that needs to be fixed via a patch is identified, to when it is delivered to
production. Agile organizations want the delivery cycle time to be the
bare minimum. This is what limits their ability to release new features
and fixes to customers. Organizations like Etsy have cycle time down
to minutes! While this is not possible for enterprise applications, the
current cycle time of weeks or sometimes even months is absolutely
unacceptable.

 2. Versioning environments. The need to maintain multiple configura-
tions and patch levels of environments that are now needed by develop-
ment, on demand, requires Ops to modify how they handle change and
maintain these environments. Any change Ops makes to an environ-
ment, whether it is applying a patch or making a configuration change,
should be viewed as creating a new version of the environment, not
just tweaking a config setting via a console. The only way this can be
managed properly is by applying all changes via scripts. These scripts,
when executed, would create a new version of the environment they are
executed on. This process streamlines and simplifies change manage-
ment, allowing it to scale, while keeping Ops best practices Information
Technology Infrastructure Library (ITIL) and IT Service Management
(ITSM) intact.

The solution to addressing both of these needs—minimizing cycle time
and versioning environments—can be addressed by capturing and manag-
ing infrastructure as code. Spinning up a new virtual environment or a new
version of the environment then becomes a matter of executing a script that
can create and provision an image or set of images—all the way from the OS
to the complete application stack being installed and configured. What took
hours now takes minutes.

DevOps Adoption Playbook22

Versioning these scripts as you would version code in an SCM system
allows for proper configuration management. Creating a new version of an
environment now involves checking out the right scripts and making the nec-
essary changes to the scripts—to patch the OS, change an app server setting,
or install a new version of the application—and then checking the scripts back
in as a new version of the environment, before executing it.

NOTE Without infrastructure as code, Ops can very easily become the
“fall” in water-Scrum-fall.

Several automation frameworks have emerged to enable the capturing and
management of infrastructure as code. The popular frameworks include Chef,
Puppet, Salt, and Ansible.

With the evolution of the cloud, IT is now going to complete software-
defined environments (SDEs). This takes the definition, versioning, and main-
tenance of complete environments as code. Technologies like OpenStack
CloudFormation (for Amazon Web Services) are the leaders. OpenStack, for
example, allows for full stack environments to be defined as software using
Heat patterns, which can be versioned, provisioned, and configured using
the likes of Chef and Salt, as needed. This also allows for the management
of these environments at scale. No longer are Ops practitioners focused on
managing individual servers that have long lifetimes; they are now managing
large numbers of servers that are transient in their existence, and provisioned
and de-provisioned on demand. This scale and agility can only be achieved
with SDEs.

NOTE In a software-defined environment world, servers are “cattle,” not
“pets” (McCance, 2012) and (Bias, 2012).

Continuous Feedback
If you step back and look at continuous feedback in a holistic sense, it essentially
means getting feedback from each functional area of the delivery pipeline
to the areas to its left. So, developers provide feedback as they develop and
deliver code, back to architects, analysts, and lines of business; testers provide
feedback, through continuous testing to developers, architects, analysts and
lines of business; and finally, Ops provides feedback to QA, testers, develop-
ers, architects, analysts, and lines of business, as well as everyone else who
is a stakeholder.

Chapter 1 DevOps: an Overview 23

The purpose of continuous feedback is to validate that the code produced
and integrated with code from other developers and with other compo-
nents of the application functions and performs as designed. Once the
application has been deployed to a production system, it is also a goal
to monitor that application to ensure that it functions and performs as
designed in a production environment, as it is being used by end-users. This
is essential to enable continuous improvement and quality. It is the core of
Deming’s PDCA cycle, as it provides the input to determine what to change
and how to act.

NOTE Continuous integration and delivery are both (almost) meaning-
less without continuous feedback. Not having testing and monitoring in
a continuous manner, and therefore not knowing how the application is
performing in production, makes the entire process of DevOps moot. What
good is having a streamlined continuous delivery process if the only way
you find out that your application’s functionality or performance are below
par is via a ticket opened by a disgruntled user?

This brings me to the two practices of DevOps that are required to enable
continuous feedback: continuous testing and continuous monitoring.

Continuous Testing Continuous testing is the capability for testing the
application, the environment, and the delivery process at every stage of
the delivery pipeline for the application being delivered. The items tested
and the kinds of tests conducted can change depending on the stage of the
delivery lifecycle. Continuous testing is really intertwined into the processes
of continuous integration and continuous delivery, if done properly. Let’s look
at how this works in detail.

Individual developers work to create code. Fixing defects, adding new fea-
tures, enhancing features, or making the code perform faster are some of the
many tasks (work items) they may be working on. When done, they run unit
tests on their own code and then deliver their code and integrate it with the
work done by other developers on their team, as well as with unchanged code
their team owns (continuous integration). Once the integration is done, they do
unit tests on the integrated code. They may run other tests such as white box
security tests, code performance tests, and so on. This work is then delivered
to the common integration area of the team of teams—integrating the work of
all the teams working on the project and all the code components that make
up the service, application, or system being developed.

DevOps Adoption Playbook24

This is the essence of the process of continuous integration. What makes
this process continuous is where an individual developer’s code is integrated
with that of their team, as and when they check in the code and it is delivered
for integration. The important point to note here is the goal of the continuous
integration process: to validate that the code integrates at all levels without
error and that all tests run by developers run without error. Thus, continuous
testing starts right with the developers.

After validating that the complete application (or service or system) is built
without error, the application is delivered to the QA area. This delivery of code
from the Dev or development environment to the QA environment is the first
major step in continuous delivery. There is continuous delivery happening as
the developers deliver their code to their team’s integration space and to the
project’s integration space, but this is limited to being within the Dev space.
There is no new environment to target.

When delivering to QA, I am speaking of a complete transition from one
environment to another. QA has its own environment on which to run its
suites of functional and performance tests. DevOps principles demand that
this environment be production-like. In addition, QA may also need new data
sets for each run of the suites of tests it runs. This may be one or more times
every day as continuous integration leads to continuous delivery at a steady
stream. This means that the continuous delivery process not only requires
the processes to transition the code from Dev to QA, but also to refresh or
provision new instances of QA’s production-like environments, complete with
the right configurations and associated test data to run the tests against. This
makes continuous delivery a more complex process than just copying code
over. The key point to note is that the goal of continuous delivery is to get
the code ready for test, and for release, and to get the application to the right
environment—continuously, so that it can be tested continuously.

If you extend the process described here to delivering the service, application,
or system to a staging and eventually a production environment, the process and
goal remain the same. The Ops team wants to run their own set of smoke tests,
acceptance tests, and system stability tests before they deliver the application
to the must-stay-up-at-all-costs production environment. That is done using a
staging environment. This is a production-like environment that needs to be
provisioned just like the QA environment. It needs to have the necessary scripts
and test data for acceptance and performance tests that Ops will run. Only when
this last phase of continuous testing is complete is the application delivered to
production. Continuous delivery processes, hence, also perform the tasks of
providing staging and production environments and delivering the application.

Chapter 1 DevOps: an Overview 25

To delve more into this process, continuous testing is achieved by testing
all aspects of the application and environment, including, but not limited to,
the following:

 ■ Unit testing
 ■ Functional testing
 ■ Performance testing
 ■ Integration testing
 ■ System integration testing
 ■ Security testing
 ■ User acceptance testing

In continuous testing, the biggest challenge is that some of the applications,
services, and data sources that are required to perform some tests may not
be available. Alternatively, even if they are available, the cost associated with
using them may prohibit running tests on an ongoing basis. Furthermore, the
costs of maintaining large test environments to serve all teams developing
multiple applications in parallel can also be high.

The solution is to introduce the practice known as test virtualization (see
Figure 1-5). This practice replaces actual applications, services, and data
sources that the application must communicate and interact with during the
test, with virtual stubs. These virtual instances make it possible to test appli-
cations for functionality, integration, and performance without making the
entire ecosystem available. This virtualization can be utilized to perform the
myriad types of testing listed earlier.

Figure 1-5: example of test virtualization

integrated with
Deploy what is ready,

virtualize the rest

Continuously test in
production-like environment

Test using real-world
network conditions

IBM UrbanCode Deploy

IBM Rational Test
Virtualization Server

Network virtualization

IBM Rational Test
Workbench

Databases Internal
messages

Test environments

Third-party
services

Simultaneously
test across

multiple test
stages

Dynamic infrastructure

Virtual components

Development Quality
assurance

DevOps Adoption Playbook26

When it comes to testing in the context of DevOps, in addition to continu-
ous testing, there is also the practice of shift left testing, which I will examine
in the “Shift Left” section, later in this chapter.

Continuous Monitoring In production, the Ops team manages and
ensures that an application is performing as desired and the environment is
stable via continuous monitoring. Ops teams have their own tools to monitor
their environments and running systems. Ultimately, the Ops team needs to
ensure that the applications are performing, from the process level down
to levels that are lower than what system-monitoring tools would allow. This
requires that Ops teams use tools that can monitor application performance
and issues. It may also require that they work with Dev to incorporate self-
monitoring or analytics-gathering capabilities right into the applications that
are being built. This would allow for true end-to-end monitoring, continuously.

As the technology in this space has grown, there has also been the emer-
gence of tools and services that monitor application behavior and user senti-
ment, providing even finer-grained feedback that is useful to developers and
the line of business.

In a nutshell, continuous monitoring requires the capture and analysis of
metrics in four areas:

 ■ Application performance
 ■ System performance
 ■ Application user behavior
 ■ User sentiment

It is, however, essential that the Ops teams not just gather this data but also run
analytics on it. Furthermore, they must make their feedback consumable by their
target audience, from deep technical Ops practitioners, like performance engineers,
to non-technical line-of-business stakeholders. Data is of no value unless it is con-
sumable. Good data, and even better, good analytics on the data, can truly enable
continuous improvement, as decisions at all levels of the delivery pipeline—from
line of business, to developers, to testers—can now be data driven.

the future Of feeDbaCk is COgnitive

With the advent of cognitive capabilities like IBM Watson, tremendous
capabilities are being brought to market in the area of predictive analytics

Chapter 1 DevOps: an Overview 27

Continuous Business Planning
The DevOps practice of continuous business planning focuses on the lines of busi-
ness and their planning processes. Businesses need to be agile and able to react
quickly to customer feedback. To achieve this, many businesses today employ
Lean thinking techniques. These techniques involve starting small by identi-
fying the outcomes and resources needed to test the business vision or value
and then continuously adapting and adjusting based on customer feedback.

To achieve these goals, organizations measure the current baseline state,
find out what customers really want, and then shift direction by updating
their business plans accordingly, allowing them to make continuous trade-off
decisions in a resource-constrained environment.

There has been a lot of work done in this space to leverage techniques made
popular by the Lean startup movement, and described by Eric Reis in his book,
The Lean Startup. The set of techniques, like delivering a minimum viable
product, that are introduced by Reis in his book are becoming popular with
businesses wanting to experiment with new markets and new business models,
without having to make complete plans for delivering complex IT systems for
these new areas. I will discuss this in more detail in Chapter 4.

The latest addition to the arsenal of capabilities available to ensure that you
are not just building the deliverable right, but also building the right deliv-
erables, is design thinking. Like Lean and Agile, design thinking has been
used in industrial design for physical products for decades, in various levels
of its evolution. It became mainstream with Peter Rowe’s 1987 book, aptly
named Design Thinking. What is new is its adaptation to IT and, specifically,
application design, with a focus on user experience. Design thinking will be
explored in more detail in Chapter 4.

Collaborative Development
Collaborative development was made popular by IBM, primarily as a practice
supported by its Collaborative Lifecycle Management (CLM) tool suite. The

of this feedback data. Data from user behavior, application behavior, and
system behavior can now be analyzed, leveraging cognitive techniques
to deliver predictive results, from predictive failure of systems, to pre-
dictive behavior of (happy or disgruntled) customers. Predictive analy-
sis can result in businesses acting preemptively to prevent outages and
disgruntlement.

DevOps Adoption Playbook28

practice is essentially in place to ensure that organizations with large, distrib-
uted teams enable visibility between, and collaboration among, cross-function
practitioners and teams of teams, across silos. This is achieved by ensuring
two capabilities across the delivery pipeline:

 ■ Provision of access and visibility by practitioners not just to artifacts,
work items, and metrics related to their functional area, but across
all functional areas into which they need to have visibility (of course,
access is managed by role and security needs).

 ■ Seamless handoff of artifacts from one practitioner or team to another.
This should be possible across functional boundaries, and should not
require any translation or transformation of the artifact, in order for
it to be consumed.

These capabilities can only be achieved by having a set of integrated tools
utilized by practitioners and teams, across the delivery pipeline.

If you look at DevOps as a cultural movement, where the fostering of com-
munication, collaboration, and trust are the core tenets you are striving for,
then collaborative development may be seen as a core capability of DevOps.
There is no better way to promote communication, collaboration, and trust
than by enabling practitioners to communicate with other practitioners using
a common tool (which is not email).

This can be achieved using tools such as Slack or Rational Team Concert,
which are becoming popular. The collaboration can be further enhanced by
leveraging in-tool collaboration around work items, enabling practitioners to
move work items between each other, add notes, attach code change sets, and
have visibility into what other team members have worked on, or are currently
working on, that impacts their own work.

Speaking of visibility, nothing fosters trust more than full visibility. If a
tester has visibility into what a developer is unit testing, the developer knows
that she cannot commit code without proper unit testing.

NOTE Total visibility drives total trust.

At our company, we will no longer require filing expense claims. You can spend
whatever you want and we will reimburse you. No questions asked. All we ask you to
do is to post your receipt on an open Wiki page which every employee in the company
can see. Trust me, you will spend wisely.

—CEO of a Silicon Valley startup

Chapter 1 DevOps: an Overview 29

shift left
Shift left as a concept also has its origins in Lean. The basic idea here is to
improve quality by moving tasks that can impact quality to as early in the
lifecycle as possible. This is done across the lifecycle. The underlying premise
is that the earlier quality issues are caught, the earlier their root cause can be
identified and addressed.

NOTE There is a well-known axiom in the QA space that if it takes one
cent to catch and fix a defect or problem in the requirements stage, it will
cost ten cents to fix the same in development, one dollar to fix in testing,
and ten dollars to fix in production (Rice, 2009).

These are, of course, illustrative numbers and are not based on some
statistical analysis of actual costs; however, the logic is sound. Shifting left
the tasks that can identify defects and problems early saves money and
improves quality.

From a DevOps culture perspective, you can also look at shift left as an
approach used to improve collaboration and communication by engaging prac-
titioners from functions that are to the right in the delivery pipeline, earlier
in the lifecycle.

DevOps Or COuples’ COunseling?

I had been asked by the architect on the account to meet with the Director
of Dev and the Director of Ops for a client of his. We met for lunch, with
the architect and me on one side of the table and the two directors on the
other. I knew right away that all was not well on their home front. They
were leaning away from each other. The Dev director complained about
how Ops was not agile, and the Ops director said that Dev sent them
garbage that would not even run without crashing servers. They even
looked at their hands while speaking about the other. I felt I was in
couples’ counseling.

The solution plan I recommended to them was to begin with small steps,
by shifting left when Ops was engaged. Their main challenge was a total
lack of visibility between the Dev and Ops teams, till it was time to deploy
to production. The suggestion I made was to pick one critical project and,

continued

DevOps Adoption Playbook30

For maximum impact on quality improvement, there are two major areas
where shift left needs to be adopted in the delivery pipeline.

Shift Left Testing
Engaging testers early, right from the requirements stage, better prepares them
for what they will need to test, and in turn, they can also ensure that the
requirements being written are testable. The goal, however, is to start testing
earlier in the lifecycle. The practice of shift left testing, as it is gaining traction
in the industry, is focused above all on ensuring integration testing earlier
in the lifecycle. While other forms of testing (as described in the section,
“Continuous Testing”) are important to shift to earlier in the lifecycle, the
value of shifting integration testing earlier is the highest.

As teams practice continuous integration, testing those integration points
to identify integration and architectural deficiencies early has a significant
impact on quality. What is the use of having perfectly functioning and per-
forming services or components, if they don’t work with other services and
components when integrated? In order to achieve integration testing early in
the lifecycle, test virtualization becomes a prerequisite, as all the services or
components required in order to complete testing may not be available when
needed. Test virtualization enables the stubbing out of these unavailable ser-
vices with virtual instances, enabling integration—and other—testing early in
the lifecycle, thus achieving shift left testing. You need to shift left to achieve
the proverbial “Test Early, Test Often” goal.

Shift Left Operations Concerns
As described in the anecdote at the beginning of this section, the Ops team is
usually seen as a separate silo in the delivery lifecycle. They are typically engaged
at the beginning of projects, as operational requirements are determined, and
then left disconnected from the Dev efforts, till it comes time to start operational

once a week, have the Ops team send one resource to the Dev team’s daily
standup meeting and have them just listen, without needing to engage,
and see if things improved. I had a follow-up meeting with the same two
directors less than three months later at a conference. They were happy to
report that the Ops team now had a presence at the daily standup meeting,
and Ops not only listened, but actively participated, sharing their progress,
plans, and blockers. Ops engagement had shifted left. They had achieved
collaboration.

continued

Chapter 1 DevOps: an Overview 31

readiness, before handoff to production. Engaging Ops early in the lifecycle and
having them participate in the Dev-test cycle prevents challenges that manifest
during deployment to production, if Ops is engaged late. Engaging Ops early
makes them aware of what is being delivered and how it will result in changes
to Ops environments, as the needs may have deviated from the as designed state.

Engaging Ops early also helps to ensure that the production-like envi-
ronments Dev and test are deploying to during Dev-test, are truly still
 production-like and have not drifted away from real production environments.
Lastly, engaging Ops early also ensures that the deployment processes and
procedure being developed by Dev teams are consumable by Ops. In the pre-
DevOps days, one of the biggest challenges with deployment to production
on a release weekend was the fact that deployment processes had never been
used or tested by Ops before. Ensuring that these processes are tested over
and over again as code is deployed to non-Prod environments—early and
often, using the same processes and procedures that Ops will use—ensures
that they will work in production.

A significant impact of shifting left is the change that happens in the roles
of the practitioners. These changes happen subtly and over time, resulting
in unintended consequences when it comes to skills needed and, eventually,
headcount distribution across the delivery pipeline.

As responsibilities shift left, the role of the practitioner changes from that of a
doer to that of a service provider. Testers may no longer be the ones doing the tests;
instead, they become providers for test automation, which can be self-served by
the developers. Similarly, for Ops practitioners, they are no longer the ones run-
ning around building, provisioning, and de-provisioning servers. Instead, they
build server images, manage server instances, and respond to issues. Dev, test,
and other practitioners provision, configure, and de-provision instances of serv-
ers, on demand, leveraging the self-service access provided and managed by Ops
teams. This raises the abstraction at which the testers and Ops now work and per-
form. Consequently, it impacts the skills they need, and the numbers of resources
that may be needed.

architecture and risk mitigation
arChiteCtural thinking

When I joined Rational Software in the mid-’90s, the focus on architecture
was imbibed into my thinking. With the methodology “Three Amigos”
Grady Booch, James Rumbaugh, and Ivar Jacobson developing UML

continued

DevOps Adoption Playbook32

The area of application delivery that is finally beginning to get the attention
it needs, in order to get the full promise of DevOps realized, is architecture.
You cannot achieve continuous delivery with large, monolithic systems. While
architectural refactoring was largely ignored in the early days of DevOps, it is
going mainstream now, mainly thanks to the evolution of microservices (or
what are referred to as 12-factor apps).5

While the debate is still ongoing over whether microservices can truly
deliver the value for every kind of application, the attention that microservices
have received has revived a much-needed focus on architecture. If you truly
understand 12-factor apps, their focus on web apps and Software as a Service
is self-evident. They may not add value to apps and systems that are large,
complex, data-heavy legacy systems, without expensive refactoring of code
and data. That investment is viable and necessary only if those systems are
being modernized into cloud-native apps. Microservices and 12-factor apps
will be discussed in more depth in Chapter 5.

The architectural transformation needed to achieve continuous delivery,
irrespective of whether microservices are used, is to enable the delivery of
changes in small batches—thus, reducing batch size. A batch is the number
of changes being delivered in each cycle or sprint. These changes include any
and all changes—code, configurations, infrastructure, data, data-schemas,
scripts, deployment processes, and so on—that encompass a full Dev-to-Ops
cycle. (Remember, not all changes are deployed to production every time.)
Reducing batch size is imperative to do the following:

 ■ Reduce risk
 ■ Improve quality
 ■ Enable faster delivery

These benefits are self-evident. The most effective way to manage risk and
quality, while increasing speed, is to reduce the batch size in each iteration
or sprint. This is a mind shift to deliver smaller, more frequent new versions.

5 http://12factor.net

(Jim joined Rational Software just before I did. We still had Booch’s Clouds
for Objects) and Philippe Kruchten developing his 4+1 View Model of
Software Architecture (Kruchten, 2002), architectural thinking was, and
is, in my bloodstream.

continued

http://12factor.net

Chapter 1 DevOps: an Overview 33

As you reduce batch size, there is less to test and validate in each cycle; there
is less to deploy; and, because there is less change, there is lower risk. If chal-
lenges or issues are identified, their impact is also limited by the smaller batch
size, making mitigation easier, via fixes or rollbacks.

Continuous improvement
At the end of the day, the heart of DevOps lies in achieving continuous improve-
ment. No matter where you start, at whatever maturity level, adopting DevOps is
not a one-time project you undertake; it is an ongoing effort. The goal is to ulti-
mately become a learning organization, as envisioned by Peter Senge in the ‘90s
(David A. GarvinAmy C. Edmondson, 2008). In the DevOps context, a learning
organization is constantly learning from what it just delivered, and continuously
improving. What do you improve? There are three areas of improvement:

 ■ The application. Are the application changes that you just delivered
functioning and performing as desired? What can you learn from the
continuous feedback coming in to improve the app in the next iteration?

 ■ The environment. Are the environments the application is running on
performing and behaving as desired? Are the service level agreements
(SLAs) being met? What can you learn from the continuous feedback
that is coming in to improve the environments in the next iteration?

 ■ The process. What can you learn from the experiences of the practi-
tioners and stakeholders to improve the delivery processes themselves
in the next iteration?

While most organizations have efforts ongoing to continuously improve the
application being delivered, fewer organizations have the same level of rigor
for continuously improving the operational environments, based on real met-
rics. Far fewer organizations have programs in place to continuously improve
delivery processes. This is the case despite movements like Lean, and their
incarnations like Agile’s Scrum and the broader Lean startup, which have built
into them what is needed to become a learning organization or team, and to
be constantly improving at a process level.

metrics

If you can’t measure it, you can’t manage it.

—Attributed to Peter Drucker

DevOps Adoption Playbook34

Irrespective of whether Peter Drucker actually said this, or of whether it
is even accurate (Kaz, 2013), the fact remains that in order to manage and
consequently improve something, you need to be able to measure some
critical metrics: Key Performance Indicators (KPIs). You will need both
a baseline measurement of these KPIs, marking the starting point, and
ongoing measurements to see if improvement is indeed occurring. Not
only do you need to measure that the needle is moving—and in a positive
direction—but you also need to be able to understand cause and effect:
which actions result in improving KPIs. If you are making several changes
to people and processes, knowing which changes are actually resulting in
improvement is critical.

business Drivers
To know which metrics to measure and improve, you have to know the business
drivers. What business impact are you striving for? Change, and even improvement
for the sake of improvement, does not make good business sense. If you are going
to invest in transforming an organization by adopting DevOps, knowing what
business drivers need to be addressed is a prerequisite. It helps to determine which
metrics matter, and thus, which capabilities to focus on and invest in. Focusing
on speed alone means that you are taking a very myopic view of the world.

As a medical device manufacturer, quality always trumps speed for us. We would
rather be late in releasing a device, than ever have to issue a recall. As you can
imagine, recalling installed pacemakers is not a good situation for anyone.

—Director of QA at a medical device manufacturer

What KPIs or metrics should you measure and strive to improve? As I
mentioned earlier, it all depends on business drivers. What are the lines of
business asking you, the IT organization, to improve? (This may vary by line
of business, even within the same organization.) Is it speed, quality, agility,
ability to innovate, or cost reduction? Is it something at an even higher level,
such as the ability to deploy new business models or capture new markets? Is
it something at a lower level, such as reducing the mean time between failures
(MTBF), or improving mean time to resolve (MTTR); or is it just lowering
bug density in the code? Is it being able to develop a partner ecosystem with
APIs? Is it reducing the time it takes to get all the approvals IT needs to

Chapter 1 DevOps: an Overview 35

deliver a new app? Is it being able to attract more tech talent by participating
in open source projects? (Everyone knows that it is the cool companies that
contribute to open source projects.)

Here is a subset of core DevOps metrics that a division at IBM used to mea-
sure the impact of DevOps adoption. These metrics, shown in the following
list, were all determined by the business drivers that this group needed to have
an impact on (speed to market, market share, and improving profitability of
the products they delivered).

 ■ Project initiation
 ■ Groomed backlog
 ■ Overall time to development
 ■ Composite build time
 ■ Build Verification Test (BVT) availability
 ■ Sprint test time
 ■ Total deployment time
 ■ Overall time to production
 ■ Time between releases
 ■ Time spent—innovation/maintenance (percentage)

DevOps: Culture

“Everyone is responsible for delivery to production.” That is what the T-shirt
says. I am giving it to everyone who is even remotely connected to my project. Of
course, the analysts, designers, developers, testers, ops folk assigned to the project
get it. But so do the people on the enterprise architecture team, the application
architecture team, and the security guys. The people in the PMO definitely get
one. I gave one to the janitor who has our floor—if the restroom is busted and
an engineer wastes 20 minutes to use one on another floor, the janitor is now
responsible for a delay in deployment to production. I gave one to the coffee
machine maintenance guy. If the coffee machine is out of pods and we send one
of the interns over to Starbucks, the coffee machine maintenance guy is now
responsible for a delay. I FedEx’ed one to our CFO. If she can’t manage the budget
and furloughs even one of my contractors this December, like she did last year, she
is now delaying deployment to production. The CIO gets it to keep my team out
of email-jail. The CTO gets it for not delaying technology approvals. Heck, if my
wife had not convinced me that it was a bad idea, I would have handed it to every

DevOps Adoption Playbook36

“significant other” who showed up at the company picnic. That, my friend, is what
a DevOps culture means to me.

—VP at a large insurance company, defining DevOps culture

As I mentioned before, DevOps, at its heart, is a cultural movement. So, how
do you change culture? Ultimately, even after all the process improvement and
automation that can be introduced in an organization, the organization can
only succeed at adopting the culture of DevOps if it is able to overcome the
inherent cultural inertia. Organizations have inertia—an inherent resis-
tance to change. Change is not easy, especially in large organizations where
the cultural may have had years to develop and permeates across hundreds,
if not thousands, of practitioners. These practitioners, as individuals, may
appreciate the value of adopting DevOps, but as a collective, they resist change
and thus have inertia. Overcoming this inertia is key. Cultural inertia can be
exhibited by the following statements:

“This is the way we do things here.”
“Yes, but changing X is not in my control.”
“Nothing is broken in our processes. Why should we change?”
“You will need to talk to Y about that; WE cannot change how

THEY work.”
“Management will never allow that.”
“Don’t you know we are in a regulated industry?”
“DevOps is the new flavor of the month. Let’s see how long this effort lasts.”

Over time, organizations develop behaviors; teams and groups divide up
actions and responsibilities along organizational lines; checks and balances are
established in the name of governance but are not related to true governance
at all; processes exist, but no one knows why—they are just there; reports are
produced that no one reads anymore, but no one is willing to do away with
them; bad things happened in the past and resulted in approval requirements
to ensure they never happen again; and so on. All of these behaviors build up
inertia in an organization’s culture.

What kind of culture does DevOps adoption need? One of trust, com-
munication, and collaboration. Adopting DevOps practices alone will not
foster such a culture, nor will the practices take root and become ingrained
in an organization’s DNA unless such a culture begins to develop. It is a

Chapter 1 DevOps: an Overview 37

chicken-and-egg situation that requires a concerted effort to overcome
the cultural inertia. This cultural inertia can be overcome by addressing
three areas:

 1. Visibility. I discussed this at length earlier in this chapter, and its value
cannot be ignored. There is no greater cause of mistrust than not hav-
ing visibility into teams or practitioners that you have to engage with,
and you are not sure what they did with the artifacts they are handing
off to you.

 2. Effective communication. Email and voicemail need to be done away
with as sources of communication in a DevOps environment; so do
project plan and status documents, slide decks, and spreadsheets.
Communication needs to be live and peer-to-peer, not via email or tick-
ets, or done through management. One practitioner should be able to
communicate with any other practitioner she needs to, without having
to go through a chain of command. These live communications should
replace email, status updates, and collaboration, and they should be
streaming. Tools like Slack, HipChat, Yammer, and Wrike are becoming
very popular as a result.

 3. Common measurements. Out of all that I’ve mentioned, the area that
causes the most inertia is a lack of right measurements for practitioners
and teams. People will not change their behaviors, unless the way they
are being measured matches the new, desired behaviors. Furthermore,
to deliver true collaboration and a sense of a single team working toward
a singular set of goals across silos, these measurements of success
should be the same among all practitioners. Dev, test, and Ops need to
have common or at least similar metrics that their success is measured
on. Everyone—and I mean everyone—has to be made responsible for
deploying to production.

summary
DevOps is now mainstream. While that is a given, not everyone has come
to the same understanding of what DevOps is and, more importantly, how it
should be adopted. The right answer is, unfortunately, “It depends.” And it
does. It depends on the business goals you are striving for; it depends on what
the current maturity of practices is; and it depends on the rate of change your

DevOps Adoption Playbook38

organization is able to absorb. Change has to be adopted to achieve increased
business value, but not at its expense. Any disruption results in dips in pro-
ductivity, and that is also true for DevOps adoption.

Adopting DevOps is a journey that has to begin with the first step of identi-
fying point A (your current state) and point B (your business goals). Once you
have identified these points, you can develop an adoption roadmap to adopt
the right practices and capabilities (the right plays) described in this chapter.
How do you go about creating such an adoption roadmap? That is the topic
of the next chapter.

Studying the Field ConditionS

The sport of cricket is one of the most popular in the world. It is followed
by an estimated 2.5 billion people, making it second in terms of fan size
only to soccer (football, outside the U.S.). The fan base is spread across the
world, with cricket-playing nations extending from New Zealand to Guyana.
These are primarily countries that were former British colonies, with the
largest base being in India. The popularity of the sport is also growing, with
newly minted national cricket teams in Canada, Scotland, Afghanistan, the
United Arab Emirates, and Hong Kong.

Cricket is played in a field with a central play area called the pitch. The
pitch is a prepared strip of compacted soil that is very closely mown—
even closer than a golf green. The main play happens on the pitch, where
the bowler tries to get the batsman out by bowling the ball using myriad
techniques to change how the ball acts when it bounces on the pitch. They
may use finger spinning and wrist actions and also take advantage of the
prominent seam on the cricket ball. Based on the characteristics of the pitch,
their efforts result in variations of bounce, speed, direction, and swing in
the air. The ultimate goal of the bowler is to trick the batsman and get him
out, while that of the batsman is to predict where the ball will go in order
to score runs.

Studying the pitch has thus become an art form for players, team
management, and, of course, expert commentators. Even before a match
begins, the team management and players spend time studying the pitch
and analyzing (guessing) the moisture in the soil, the grass on the pitch,
the brittleness in the soil, and also the forecasted dew—all of which may
change the nature of the pitch for games that are played at night. Before
they submit the final roster, they use this information to decide which

Chapter 2

adopting devops

continued

The DevOps Adoption Playbook: A Guide to Adopting DevOpsin a
Multi-Speed IT Enterprise
By Sanjeev Sharma
Copyright © 2017 by John Wiley & Sons, Inc., Indianapolis, Indiana

DevOps Adoption Playbook40

What does it mean when you say you want to adopt or implement DevOps?
What is a DevOps solution? DevOps is not about adopting a product or a
process. It is about adopting a philosophy, one that includes principles and
practices that affect people, processes, and tools. Adopting DevOps is not
just about adopting a product or a process; it is about undergoing transfor-
mational change.

Most organizations looking to adopt DevOps have moved on from asking
the questions, “What is DevOps?” and “Is DevOps the latest fad, or is it here
to stay?” They are now asking questions along these lines:

 ■ Where do I start with DevOps adoption?
 ■ Now that I have succeeded in adopting DevOps in small pockets around

the organization, how do I scale it across the enterprise?

In either scenario, you do not just adopt DevOps. You start a journey of
adopting the capabilities that make up DevOps (introduced in Chapter 1).
Adopting DevOps is not a one-and-done project. It is adopting a mind-set, a
culture. It is a commitment to a journey of continuous improvement by adopt-
ing a set of capabilities and practices that are based on Lean principles. It is a
long-term transformation that requires a well-defined, well-planned adoption
playbook, which includes a transformation roadmap. This playbook will, of
course, need to evolve over time as the adoption progresses and other variants
present themselves. It thus needs to be a living document that is managed as
a core adoption asset. That being said, starting with a well-defined playbook
is essential to the success of the transformation.

The question then becomes, “Where do I start?” This requires knowing
Point B of your journey (where you want to go and what business goals you

bowlers to put on the team, based on whose technique would be best
suited for those pitch conditions.

Cricket is unique in how much a team’s performance can depend on prop-
erly studying and assessing the pitch conditions. Barring maybe baseball,
almost all other team sports have standard playing fields and surfaces that
do not have significant variation between locations or change as the game
progresses. Games have been won or lost based on how well a team under-
stood the pitch and prepared for it.

continued

Chapter 2 adopting devops 41

want DevOps to help you achieve) and Point A (where you are today and how
mature you are when it comes to practicing these capabilities today). Once
you know Points A and B, you can chart out an adoption playbook made up
of a series of plays that the teams in your IT department will need to execute
in order to progress toward achieving the business goals (or arrive at Point B).

This playbook needs to include plays that touch upon the four core areas
of improvement that are required for DevOps adoption:

 1. Process Improvement—How to make the processes lean and efficient
by eliminating waste

 2. Tools for Automation—How to automate these improvement processes
with tools to make them repeatable and scalable, and to reduce errors

 3. Platform and Environments—How to make platforms and environ-
ments for the application delivery pipeline—all the way from require-
ments through to production—resilient, elastic, scalable, and able to
manage configurations

 4. Culture—Above all, how to foster a culture of trust, communication,
and collaboration

Adopting change in all these areas is the transformation that an organiza-
tion needs to take. This journey varies by organization. In fact, it varies by
projects and teams within the organization. The journey takes different paths
and different amounts of time, depending on various factors, the most impor-
tant of which is your current state of maturity. Starting from a level of imma-
turity where you don’t even have good source code management practices,
and wanting to get to “no downtime” deployment, requires a long journey.

developing the playbook

I didn’t believe in team motivation. I believe in getting a team prepared so it knows it
will have the necessary confidence when it steps on the field and be prepared to play
a good game.

—Tom Landry, American football player and coach

As in any match, irrespective of the sport, achieving success in a DevOps
transformation eventually depends on the plays that you run to reach the
goal. Again, as in any sport, you need a set of plays captured in a playbook

DevOps Adoption Playbook42

that you can reference, and you need to run the right play depending on the
situation—in this case, for a project, division, or organization.

Understanding the playing field is critical when developing the playbook
to plan for a DevOps adoption or transformation. A playbook for a sport like
basketball includes myriad plays, including the following:

 ■ Preparatory drills
 ■ In-bounding plays
 ■ Press defenses
 ■ Zone offences
 ■ Secondary breaks
 ■ Quick hitters
 ■ Buzzer beaters
 ■ Last-second plays

The coach and players call the play they will run, based on the situation:
court location, score, time on the game or shot clocks, which players are on
the court (their own and opposing team members), and so on. Similarly, a
DevOps adoption playbook includes multiple plays that are appropriate to the
situation, whether it is at a team, project, program, division, or enterprise level.

To create such a DevOps transformation playbook, you need three core
ingredients:

 1. A clear definition of the target state (business goals and drivers)
 2. An understanding of the current state (current capability and maturity)
 3. A determination of the best path to take, or plays to run (risk-value-

investment balance)

Studying and assessing these ingredients is akin to properly understanding
the field conditions on which the adoption game will be played.

identifying the target State (Business goals
and drivers)

All winning teams are goal-oriented. These teams win consistently because everyone
connected with them concentrates on specific objectives. They go about their business
with blinders on; nothing will distract them from achieving their aims.

—Lou Holtz, American football player, coach, and analyst

Chapter 2 adopting devops 43

Let’s step back for a moment and look at the IT world through a business
lens. Lines of business (LOBs) need IT departments to deliver capabilities to
their customers and users that allow the customers to gain business value. In a
nutshell, IT systems are nothing more than the vehicle through which business
value is delivered by the LOBs to customers. Whether it is the business value
of hailing a taxi, operating a weapons system, paying your taxes, or “liking” a
cat video, or the business value to an organization’s own employees of manag-
ing their paycheck deductions and deposits, IT is responsible for creating the
systems that deliver this value.

LOBs also rely on these systems to harvest feedback on how customers and
users are consuming the business capabilities and deriving value; how they are
interacting with the business systems; and what new or enhanced capabilities
and features they need in order to get better value. IT departments therefore
need to not just align themselves to the goals of the LOBs, but also to keep
transforming themselves in order to meet the changing needs of the LOBs.
As an industry, IT has not done a good job at keeping up with the needs of
business. This has resulted in the existence of shadow IT, where LOBs have
bypassed their in-house IT departments and gone to outside IT vendors and
service providers to satisfy their IT needs.

So, what are the LOBs asking IT departments to deliver, and how? While
the exact requirements vary by organization, industry, and even geography,
in general, the LOBs are asking the IT departments to deliver IT systems and
applications with the following:

 ■ Velocity
 ■ Agility
 ■ Innovation
 ■ Quality
 ■ Lower cost

Now, these requests may manifest themselves as various business requests
that the LOBs may present to the IT departments, as well as technology
requests that the IT departments may ask of themselves to address the LOBs’
needs. Here are some examples:

 ■ Time to value
 ■ Speed of deployment
 ■ Reduced cost/time to deliver
 ■ Reduced cost/time to test

DevOps Adoption Playbook44

 ■ Increased test coverage
 ■ Increased environment utilization
 ■ Minimized deployment-related downtime
 ■ Minimized deployment time issues (for example, weekend-long deploy-

ment marathons)
 ■ Minimized rollbacks of deployed apps
 ■ Increased ability to reproduce and fix defects
 ■ Minimized mean time to resolve (MTTR) production issues
 ■ Reduced defect cycle time

These requirements vary by organization, and even by project or program
within an organization.

Yes, Sanjeev, these are the five things the business is asking of us—lower cost, lower
cost, lower cost, lower cost, and yes, lower cost.

—CIO of a major European financial services company

IT departments, especially in large organizations, are not exactly designed
for velocity, agility, or innovation. They evolve over the years to deliver sta-
bility, quality, and predictability, which they achieve by focusing primarily
on change management. This results in the development of change manage-
ment processes, practices, and tools; overbearing governance and compliance
regimes; archaic and siloed organizational structures; and cultural inertia. This
has also resulted in the delivery of changes in large packages at quarterly or
monthly intervals. Unfortunately, as I will discuss in Chapter 3, large “chunks”
of work delivered at infrequent intervals, no matter how well the managed, are
usually more complex, more likely to be interdependent, and more difficult to
roll back than small change sets once discovered in production. This is fur-
ther exacerbated by the lack of agility of the legacy systems and their delivery
processes, which were designed before modern architectures and processes
became available, but still need to be supported by the IT departments.

In some cases, this lack of ability of IT departments to deliver agility, veloc-
ity, and innovation can result in LOBs creating their own shadow IT divisions
to deliver their IT needs. Shadow IT is a term used to describe situations where
LOBs either create their own IT teams and infrastructure that are outside the
enterprise IT department or use non-company resources, such as third-party
development teams and public cloud services, to develop and deliver their IT
needs. The challenge with shadow IT is that they are in the shadow, outside

Chapter 2 adopting devops 45

the organization’s IT governance and oversight. Furthermore, shadow IT does
not usually have the in-house knowledge of the business. That is, in general,
they are not as good as in-house people at understanding the business of
the enterprise, they are not usually in the loop, and they are not privy to or
engaged with influencing the strategic direction of the enterprise. Therefore,
they are not as potentially capable as your own IT people at making decisions
that will add value.

The solution, of course, is to undergo a DevOps transformation that
enables IT departments to adopt the necessary practices, automation tools,
and organizational and cultural change to deliver applications and services
with velocity and agility, and become innovative by being able to deliver rapid
experimentation.

One of the core goals of DevOps is to achieve maximum efficiency with
an application delivery pipeline by optimizing the pipeline. This optimization
allows for agility, velocity, quality, and cost control. As I mentioned earlier
in this chapter, achieving these goals requires lean and efficient processes;
integrated application development and delivery tools; fast- and easy-to-
provision environments; and finally, a culture of trust and communication
across the cross-functional teams. Along with maximizing efficiency, most
organizations need to drive innovation. This need for innovation, in turn,
drives the need to adopt new technology platforms and processes that are
designed for innovating at speed—for example, a Cloud-based “Platform as
a Service” (PaaS) that inherently delivers all the necessary DevOps services.
This need to innovate is in turn creating the realization that IT departments
also need to optimize their legacy application-delivery capabilities. They
need to do so to free up resources—people and money—that can be invested
in innovation. They also need to do so to ensure that traditional slow delivery
does not become a drag on their ability to innovate at speed.

It is important at this point to mention the models that are being used in the
industry in terms of balancing innovation and optimization at multiple speeds.
You can think in sports terms as balancing offense and defense. This model,
commonly referred to as Multi-Speed IT, is discussed in depth in Chapter 3.

assessing the Current State

NOTE I am often asked how long it will take to achieve a return on invest-
ment on a DevOps transformation. It is just like asking how long it takes me
to get to Austin, TX, from Washington, DC. The flight is three hours and

DevOps Adoption Playbook46

three minutes long. The time it takes me, however, is much longer because I
do not live at the airport (although it surely feels like it). How long a journey
takes depends on where exactly you start from. The same is true for your
DevOps transformation.

There are many ways to look at the current state or maturity of an organiza-
tion or team. Coaches and captains of sports teams need to have a very good
understanding of their team’s capabilities: strengths and weaknesses; individual
players’ skills, current form, and health; opposing teams’ skills and form; and
the current state of the game. This set of data allows the team coach and leaders
to pick the right play to run next. Similarly, in the IT world, understanding a
team, project, or organization’s current maturity and state allows the leadership
to run the right play from the playbook at the right time.

To start assessing current maturity, let’s start with some core questions
about your organization’s capabilities:

 1. Are you able to rapidly deliver new, innovative applications and to
leverage modern architectures?

 2. Are you able to modernize existing applications to allow for faster
delivery and innovation?

 3. Are you able to adapt culture, tools, and processes to help you succeed?

Most organizations will say that they have a challenge in at least one of
these areas. Many will actually confess to all three. Properly addressing the
challenges in these areas requires a three-step process:

 1. Identifying the inefficiency or waste
 2. Identifying the root causes of the inefficiency or waste
 3. Developing a plan or play to address the root causes

Identifying the Inefficiency or Waste with Value Stream Mapping

Value stream mapping is a Lean-management method for analyzing the current state
and designing a future state for the series of events that take a product or service
from its beginning through to the customer.

—wikipedia, n.d.

You identify the inefficiency or waste by looking at the delivery pipelines for
the various applications an organization delivers and looking for where there is

Chapter 2 adopting devops 47

waste. Informal surveys done by myself and others, along with anecdotal evi-
dence, have suggested that up to 40 percent of the resources in many organiza-
tions are wasted. Because this was not a scientific survey, the margin of error
in this 40-percent number is likely high. However, I have never had anyone
challenge with proof to the contrary. Mary Poppendieck defines waste as “any-
thing that depletes resources without adding customer value” (Wagner, 2009).
This waste comes in several forms, most of it caused by process and governance
overheads placed on the practitioners, and extra steps added to processes, all
with good intentions. Examples of waste include the following:

 ■ Unnecessary process steps
 ■ Unnecessary rework
 ■ Unnecessary features
 ■ Building the wrong artifact or process
 ■ Transforming an artifact constructed by someone else
 ■ Waiting for someone else to act on an action or task
 ■ Waiting for an approval
 ■ Waiting for an environment
 ■ Creating a ticket for a manual task
 ■ Creating or updating an artifact that adds no value to the end user

or client
 ■ Reporting to management by manually updating databases or

spreadsheets
 ■ Status reporting

Most of the waste happens during handoffs between stakeholders, espe-
cially across functions, and when a practitioner waits for someone else to
act. Another source of waste at the handoffs is the artifacts being passed on
from one stakeholder to the next not being “usable as is”. That is, the arti-
facts require the receiving stakeholder to modify or transform the artifacts
before they can be used or need to return them to have them reworked. Lean
methodologies refer to the metric measuring this as %Complete and Accurate
(%C&A) (Martin, 2011).

The most effective way to identify these sources of waste and inefficiency is
by conducting what is known as a value stream mapping exercise. Value stream
mapping is not a new method; the Lean movement has been using it for years.
Tom and Mary Poppendieck made it popular in the software industry as a tool
to find waste in software development processes (Poppendieck, 2008).

DevOps Adoption Playbook48

In the context of DevOps, doing a value stream mapping exercise involves
looking at the flow of requests coming in at one end of the delivery pipeline
and an application running in production at the other end. These requests
may include the following:

 ■ New requirements
 ■ Enhancement requests
 ■ Change requests
 ■ Bug fixes
 ■ Policy changes
 ■ Configuration changes
 ■ Content updates

They include essentially anything that causes a change to the application
running in production.

When a request comes in to develop or deliver a change (or something new),
stakeholders execute processes that create, modify, or transform artifacts and
move them from one environment to the next, as they are handed off from
one stakeholder to the next. Requirements as artifacts come in at one end, and
code running in production environments comprises the end artifacts at the
other end of the delivery pipeline.

The end goal of DevOps is to reduce waste (or, as Lean methodologies call it,
to remove non-value-add work) to make the processes more efficient (or replace
them with better, more efficient processes) and then continue to do so, striving
for continuous improvement, or what the Japanese refer to as kaizen. In order
to do this, you need to look at all of the following:

 ■ Artifacts
 ■ Stakeholders
 ■ Environments
 ■ Processes

The goal is to identify where the waste is (see my earlier list for examples
of waste) and then perform a root-cause analysis to determine the cause of
the waste. Here are some examples of where waste may lie:

 ■ The process is inefficient.
 ■ The process is manual.
 ■ The artifacts are not in the right form.

Chapter 2 adopting devops 49

 ■ Handoffs between stakeholders are inefficient.
 ■ Stakeholders are unable to perform tasks in the processes.
 ■ Stakeholders do not have access to the artifacts they need, when they

need them.
 ■ Stakeholders spend time on unnecessary tasks.
 ■ Stakeholders work on unnecessary artifacts.
 ■ Processes are overburdened by governance.

I cover root-cause analysis later in this chapter.

Using a Value Stream Map The most effective method of identifying
waste in the delivery pipeline is value stream mapping (VSM). A simple value
stream map and its components are shown in Figure 2-1. Let’s now explore
how you identify waste using a VSM exercise.

You can visualize a process in two ways:

 1. Activity-centric: The process is described by the set of operations and
their order needed to carry out the process to create the work products.
They are well described by flow charts or IDEF diagrams.

 2. Artifact-centric: The work products and their lifecycles describe the
process. The work products are treated as state machines that undergo
state transitions. Taking a work product through a state transition speci-
fies each process step (Cantor, 2014).

Step 1 Step 2 Step 3

Time
Time End to end timeTime

Time

Figure 2-1: a simple value stream map

When conducting a VSM exercise, you need to look at both activities
and artifacts. You do this by taking an artifact and following it through the

DevOps Adoption Playbook50

delivery pipeline, as stakeholders perform activities on the artifact to trans-
form (state transition) it, create more artifacts, and modify existing ones.
For example, the artifact of a single enhancement request results in several
code artifacts that are to be created and several that have been modified.
As artifacts flow from one stakeholder to the next and are transformed and
moved from one environment to the next, you need to conduct in-process
analysis to determine whether there is a bottleneck or source of waste that
you can address. Figure 2-2 is a picture of a value stream map developed
during such an exercise.

Figure 2-2: Value stream mapping a delivery pipeline

Taking this concept across the delivery pipeline, following the artifacts
through the delivery pipeline results in the creation of a value map, which
captures all the identified bottlenecks in the value stream.

Two sorts of measures can be found in the value map:

 1. Process Time: The time it takes to actually perform the work
 2. Lead Time: The elapsed time from the time work is made available until

it is completed and handed off to the next stakeholder (Martin, 2011).

Chapter 2 adopting devops 51

In addition, the quality of the work being done, as it is handed off from
one stakeholder to the next, is measured using %C&A, which was introduced
earlier in this chapter.

Leveraging the VSM, whether you conduct an in-depth VSM exercise (which
generates detailed measures of process time and wait time to develop stream
and in-process measures) or an overview VSM exercise (which focuses on just
identifying bottlenecks rather than detailed measurements), you can then carry
out a root-cause analysis (RCA) exercise to determine the root cause of each
identified bottleneck. The root cause, in turn, is what needs to be addressed
and is therefore the focus of the DevOps adoption roadmap.

As I mentioned, you can perform a value stream mapping in two general
ways (there are actually as many ways to conduct a VSM as there are con-
sulting organizations and methodologies, because everyone has their own
approach):

 1. In-depth VSM—This is a multi-day, or even multi-week, engagement
with multiple consultants spending time with practitioners measur-
ing wait times and process times for every task performed. With these
measurements, a detailed value map can be created that identifies the
exact sources of waste in the activities performed by each practitioner
type. These VSM exercises are standard in manufacturing to streamline
labor-intensive processes.

 2. Overview VSM—This is typically a half-day to one-day workshop with
the executive leadership of the organization, representing the core func-
tional areas in the delivery pipeline, rather than practitioners. The
workshop exercise draws out an exemplary delivery pipeline, for an
exemplary change request or new requirement, with the goal of identi-
fying the major bottlenecks in the delivery pipeline. These bottlenecks
are then analyzed to determine root causes of waste. These VSM exer-
cises are more common in the IT world, and I discuss them in detail
later in this section.

Delivery Pipeline versus Factory Assembly Line A common anal-
ogy that is used to explain DevOps continuous delivery is to compare it to an
assembly line in a factory—or at an even broader level, to compare a software
supply chain to a manufacturing supply chain. While this analogy is used
across the IT industry for several reasons, and will be used in this book, it does
have limitations. These limitations are significant in the context of developing
a VSM. Let’s examine the parallels and differences in detail.

DevOps Adoption Playbook52

A supply chain is a system of organizations, people, technology, activities,
information and resources involved in moving a product or service from supplier to
customer.

—Wikipedia, n.d.

This definition, while typically used in the context of a manufacturing
supply chain, actually holds up well for a software supply chain, with some
significant differences.

Manufacturing Supply Chain A manufacturing supply chain transforms
natural resources, raw materials, and components into a finished product
that is delivered to the end customer (ibid). In such a supply chain, a manu-
facturer becomes more an integrator than a manufacturer. Be it a product as
simple as a child’s doll, with just a few components (plastic body, fake hair,
clothes, cardboard, and plastic box) or a product as complex as a car, with
more than 20,000 hardware and software components, for every component
that goes into the final product, the manufacturer needs to ask a question:
Can another company make the component faster or cheaper, in the quantity
and with the quality they need? For every component for which they answer
yes, the manufacturer takes on the role of an acquirer, and the company actu-
ally making the component, that of supplier. Of course, these suppliers may
be internal suppliers or another group or division within the company that
delivers the component.

A typical example would be the brakes of a car. They are an essential com-
ponent in every car, but still, the manufacturer has to decide whether some-
one else can make them better and cheaper. If yes, then they should acquire
the component from that supplier. Another scenario where a manufacturer
becomes an acquirer is for a component where the manufacturer does not
have the required expertise to manufacture it in-house—for example, traction
control systems or anti-lock brakes in a car.

Another scenario may be where a supplier owns intellectual property for
some components, making it necessary for the manufacturer to acquire them
from that supplier—for example, high-capacity batteries in an electric car.
As a result of this model, modern automobile manufacturers have become
automobile designers and assemblers, acquiring most individual components
from external suppliers. In reality, apart from actual physical components
that go into the completed product, manufacturers may also acquire some of
the design or prototyping work. For example, an aircraft manufacturer may

Chapter 2 adopting devops 53

outsource wing edge design to a boutique aeronautical engineering firm that
specializes in wing edge design work.

This relationship between the acquirer and the suppliers in the supply chain
subsequently becomes based entirely on communication and agreements. The
acquirer communicates design specifications and quality requirements, and
the supplier provides the components, typically just in time, with the right
quality, and in the right quantity. For the acquirer, the cost benefit comes
from not having to own the manufacturing plant—the facilities, equipment,
and people—which creates the components that someone else can supply. For
the supplier, the cost benefit comes from their ability to reduce costs as the
manufacturing scales.

Software Supply Chain: A software supply chain extends this notion of a
supply chain to software and systems delivery. While the underlying business
logic and value of adopting a supply chain model remains the same as that for
a manufacturing supply chain, the parallels do not fully apply. For a software
manufacturer, it makes perfect sense to outsource parts of its software supply
chain—to create a software factory. There are components of the software that
others can build more cheaply, due to lower labor rates, experience in building
these components, or specialized expertise (like mobile development) that
the acquirer may not have, or may not want to have, in house. Here again, it
is important to point out that the suppliers may be in-house software teams
that are in another group or division within the company.

NOTE Here is where the parallels fall apart. The main reason for this is
that factories and their assembly lines produce identical widgets and fin-
ished products, whereas software delivery does not. Widgets (components)
in software are not alike; each is unique. That is what developers are paid
to do: create new, unique code.

This also applies to value stream mapping. Although detailed value stream
maps with granular measures of wait times and process times work well
for assembly lines and manufacturing supply chains, they do not work as
well for application delivery. For example, a developer taking x hours of
process time to develop one component will not necessarily take the same
amount of time for the next component. Wait times also tend to vary; after
a developer writes code, she may be waiting for a tester to finish testing,
which may vary based on how much new code went into the component that
needs testing. For delivery pipelines, it is therefore better to focus on finding
major bottlenecks, rather than those at a granular level. An overview value

DevOps Adoption Playbook54

stream mapping exercise does just that and is the recommended approach
to get started with DevOps.

Let’s examine some more of the differences in detail:

 ■ Requirements—Software specifications (that is, requirements) are never
as well defined as those of physical components. Think of a set of
requirements for a user interface (UI) on a software project, and com-
pare them against the detailed engineering and design specifications
that are provided for a car’s main UI, the dashboard.

 ■ Requirement stability—Software requirements are usually unstable and
not well understood by even the acquirer. Requirements evolve over
time as the acquirer better understands the application or system being
built. (That is one of the main reasons why the industry came up with
agile software development practices in the first place.)

 ■ Change—Software products change a lot more often than physical
products. A 2012 Toyota built in January is not that different from one
built in May. Meanwhile, most apps on a mobile phone are updated
every few weeks.

 ■ Cost—The cost of manufacturing a software component does not
decrease with scale. When you are selling over a million cars a year,
each of which uses four brake assemblies, making brake assemblies
becomes cheaper than it would be for one set of custom brake assem-
blies for, say, a Formula One race car. In software development, almost
every time you write code, it is customized.

 ■ Integration—In manufacturing, the interfaces between components are
well defined. They are probably based on standards (say, fixed-size nuts
and bolts); even if they are non-standard, they can be defined in exact
specifications, with associated acceptable tolerances, to the supplier.
Software interfaces come nowhere close to this. In fact, when it comes
to the integration points between components, the line separating the
responsibilities of an acquirer and a supplier is very fuzzy. Add to that
the complexity of having multiple component suppliers and their vari-
ous integration points, and the situation becomes really interesting.
(Think, the first release of healthcare.gov.)

 ■ Estimation—Once you have built a manufacturing facility to mass-
produce a component, you can estimate with some accuracy how much
material and time it will take to churn out x units of the component.

Chapter 2 adopting devops 55

Estimating the level of effort for software development is tricky at best.
Unless you are hiring the same team, with considerable experience
in building just that type of component, you cannot accurately tell
how long it will take to develop the component. Changes in require-
ments and interface specifications make estimation even more complex.
Practices like Agile do allow for somewhat better estimation, but there
is a reason they call it planning poker (Hartman, 2009).

 ■ Quality assurance—Quality control is another area where software
deviates from manufacturing. When an automobile manufacturer
receives a component, they can easily test it to see if it meets their
specifications and tolerances. All they have to do is test a statistically
significant sample size to validate a batch they have received. For soft-
ware, every component has to be tested for all the use cases that were
specified. Rigor of testing is driven by balancing the level of quality
required with the cost of testing.

NOTE Defibrillator software needs to be tested more rigorously than a
word processor (although enough word processor crashes may necessitate
using a defibrillator).

 ■ Standard practices—Manufacturing practices are generally standard-
ized and do not vary too much between suppliers with certain certi-
fications, such as ISO. Software development practices, on the other
hand, are not as well defined or standardized. Even when they are well
documented, software development practices are difficult to implement
and follow to the letter. The dismal success rates of waterfall projects
over the past couple of decades are ample proof of that. Agile practices
are still evolving and are, by definition, agile. Thus, two suppliers with
Scrum-certified practitioners may practice Scrum very differently, with
radically different results.

 ■ Incremental construction—Hardware components are not built incre-
mentally. Although their design and even manufacturing practices may
incrementally improve over time (especially for organizations following
practices like Lean or kaizen-based continuous improvement), compo-
nents are built from scratch for each unit. Brakes on a 2017 car may
be better than those on a 2016 model, but the ones on a new 2017 car
are not using any parts of an older brake. In contrast, software compo-
nents are built incrementally. With every iteration, whether it is within

DevOps Adoption Playbook56

a release or a new version of the component, new code is added to old
code or old code is modified. With the evolution of re-use and of open-
source libraries, even brand-new components are now typically built
upon code from other components or open-source libraries.

 ■ Contracts—Agreements to acquire manufacturing components are based
on quantity, time, and quality service level agreements (SLAs). Given
known manufacturing and raw material costs, these agreements are
typically easy to create and enforce. Contracts in software component
acquisition, on the other hand, become very complex. Fixed-price con-
tracts are an issue, as incorrect time-and-effort estimation may lead to
missed deadlines or suppliers taking quality shortcuts to meet time-
based deadlines. Time-and-effort contracts need complex SLAs and
oversight, making them difficult to price and implement.

As this list demonstrates (and it is in no way exhaustive), while software
and systems development, especially of large, complex software and systems,
is similar to a supply chain in a factory (and at a lower level of abstraction, an
application delivery pipeline is similar to an assembly line), the parallels fall
apart on a closer look.

Conducting a Value Stream Mapping Workshop A value stream
mapping workshop is best carried out with executives who have decision-
making ability. In order to be successful, at a minimum, you want the follow-
ing stakeholders:

 ■ VP or executive owner of the line of business
 ■ VP or executive owner of application development
 ■ VP or executive owner of Quality Assurance (QA)
 ■ VP or executive owners of operations

In addition, other key stakeholders can also add value to the workshop but
are optional, such as executives from the following departments:

 ■ Security
 ■ Enterprise architecture
 ■ Program Management Office (PMO)
 ■ Product/offering management (if it exists)

The workshop is best done at an enterprise, division, program, or line-of-
business level, rather than at a project level, because projects can become too

Chapter 2 adopting devops 57

granular to be valuable. The workshop typically takes two to four hours to
run. It is essential that all the executives who are participating engage in the
entire workshop. The goal is for the executives to take ownership of all the
identified bottlenecks and the plan to address them.

I have never had so many of my direct reports in the same room, working
towards addressing common challenges as a team, rather than focusing only on the
areas they own.

—CIO of a major financial services organization after the workshop

The workshop is done as a series of exercises, with a facilitator driving and
guiding the executives who are participating. Here is the recommended set
of exercises to run:

 1. Identify business goals for the customer that is driving them to adopt
or consider DevOps as a practice.

 2. Identify IT initiatives that are already underway or planned for DevOps.
These initiatives are then mapped back to the business goals to clarify
alignment.

 3. Create a value stream map to identify bottlenecks and inefficiencies
found by the executives that are preventing them from achieving identi-
fied business goals.

 4. Identify a prioritized list of three to four capabilities that can help them
address the identified bottlenecks.

 5. Create a roadmap of adoption for those best practices—with milestones,
time frame (dates), and identified challenges to their adoption.

The core of the workshop, of course, is the creation of the value stream map,
and that is where the most time is spent during the workshop.

The best way to create a value stream map is to take one artifact, typically a
new requirement, through the delivery pipeline. As I mentioned earlier in this
chapter, you look at the artifact (new requirement) as stakeholders execute processes
on it to change its state and then hand off to other stakeholders. As this happens,
for each stakeholder and handoff, you need to identify any source of waste. Waste
comes in two main forms, which are the bottlenecks in the delivery pipeline:

 1. Wait times—When a stakeholder is waiting for an action or for an
artifact handoff, from another stakeholder

DevOps Adoption Playbook58

 2. Overproduction or wrong production—When a stakeholder changes the
state of an artifact that is unnecessary or that does not add any value
to the end deliverable

A value stream mapping exercise of a delivery pipeline may identify any-
where from 10 to 15 key bottlenecks. The next critical task is to do a root-cause
analysis (RCA) to determine the cause of each bottleneck, which is typically
a symptom that is exhibited to the stakeholders. I discuss doing an RCA in
more detail in the section “Diagnosing the Root Cause.”

Once the root cause of each bottleneck has been identified, you can
then look for dependencies between them and eventually prioritize them.
You need to do the dependency analysis before prioritization in order to
eliminate duplicates and lower the order of bottlenecks that cannot be
addressed until other bottlenecks they are dependent upon are addressed.
The rest of the prioritization looks at business impact, return on invest-
ment, and effort to address. It makes sense to create a balance of high-busi-
ness-impact items and low-hanging fruit—areas that are easy to address
and can have an immediate impact and show value. A business case and
quick impact obviously need to be shown to the business. This prioritized
list then needs to be put in context of real timelines and budgets for the
organization.

The list of prioritized bottlenecks then needs to be mapped to business
goals that were initially identified. It makes no sense to work on addressing
a bottleneck that does not have a direct impact on a key business objective,
as provided by the lines of business. This step further refines the prioritized
list of bottlenecks to be addressed. Eventually, a prioritized list of the top
five to six bottlenecks is developed. This list is then used to identify the
right DevOps plays that need to be run, for developing a DevOps adoption
roadmap.

Diagnosing the Root Cause

Winning squads emphasize fundamentals—pick and rolls, teamwork, and defense.
They play with passion and they play hard. They move the ball, and when their
players don’t have it, they move well without the ball. They play with sagacity by
exploiting mismatches. They gauge their opponent’s weaknesses and then attack
them relentlessly.

—Walt Frazier, Former NBA player

Chapter 2 adopting devops 59

As I mentioned, you need to look at the root cause of each identified
bottleneck to determine which plays to include in the playbook. This is
needed because the bottlenecks identified during a value stream mapping
exercise are actually the symptoms of the real cause of waste or inefficiency.
A root-cause analysis is needed to identify them. A typical method to carry
out a root-cause analysis is by asking “why” five times (Ohno, 2006). This
approach allows one to go past the initial symptoms and get to the source,
or root cause.

Let’s explore some common bottlenecks and see what their underlying
root causes may be. Here is a set of symptoms of inefficiency and waste in an
organization or project:

 ■ Lack of tool integration results in wait times as artifacts move from one
practitioner to the next.

 ■ Team members lack visibility and synchronicity with other team mem-
bers’ work.

 ■ It’s hard to learn and contribute across team boundaries.

These symptoms are typically due to a lack of an integrated delivery pipeline.
The following set of symptoms is typically due to a lack of standardization

of environments:

 ■ Multiple disconnected dev-test environments that are not similar to the
production environments

 ■ Multiple technology stacks that are maintained and managed
independently

 ■ Lack of ability to deploy to the best platform based on risk, value, and
technology fit

The next set of symptoms are examples of inefficiencies that are caused by
challenges with managing multi-speed application delivery:

 ■ Lack of ability of lines of business’ need to release business capabilities,
rather than individual applications.

 ■ The slowest speed delivery pipeline becomes a drag to the speed of the
fastest delivery pipeline.

 ■ Almost all IT resources are assigned to run, manage, and maintain
existing applications and workloads, with minimal resources available
to invest in innovation.

DevOps Adoption Playbook60

Choosing the transformation plays

NOTE Austin, TX, may be a three-hour flight from Washington, DC, but
what if I cannot fly due to budget constraints? I can drive (22 hours), take
the train (17 1/2 hours), or walk (488 hours—not recommended for us mere
mortals). Based on my budget, time available, fear of flying, and ability to
walk for days, I have to choose a path to take.

The rest of this chapter is primarily dedicated to describing the various plays
that need to be adopted and executed in order to choose the right DevOps
capabilities for the identified bottlenecks. Once you identify and understand
the root cause of each bottleneck, the next step is to determine which DevOps
capabilities can help address the root causes. However, it is not as simple as just
adopting the DevOps capability. As I alluded to in my travel analogy, you need
to consider several business, technical, and organizational factors in order to
decide on which DevOps capabilities to adopt and how. These factors include
the following:

 ■ Ability of the project team to consume the process and tool changes
 ■ Ability of the broader organization to consume the organizational

changes
 ■ Investment available to fund the adoption
 ■ Project timeline
 ■ Time available to show results
 ■ Executive buy-in and sponsorship
 ■ Practitioner buy-in
 ■ Cultural inertia

I cover all of these factors in detail in the following chapters, as I discuss
particular plays and how to execute them.

Determining the right plays and the DevOps capabilities for each play
requires looking at four areas for each bottleneck that is being addressed:

 1. Process improvement
 2. Tools for automation
 3. Environments and platforms
 4. Culture

Chapter 2 adopting devops 61

Each play needs to address multiple, if not all of these, areas in order to be
successful. Then, the team leading the DevOps transformation has to ensure that
the right plays are executed for the right bottleneck, taking into consideration
the business, technical, and organizational factors listed earlier in this section.

adopting the transformation plays
Once one has selected the right DevOps transformation plays, the next set of
tasks, and really the real effort, becomes driving their adoption. I will present
plays dedicated to driving DevOps adoption in a large enterprise in detail in
Chapter 6. However, it is important to understand and prepare for two areas
that any team developing and executing a DevOps transformation roadmap
needs to tackle:

 1. Addressing the productivity dip
 2. Overcoming cultural inertia

Let’s look at how one may recognize and address them.

Minimizing the Dip

NOTE Introducing any change results in an immediate drop in productiv-
ity. I call it the dip. It is unavoidable. I experience it when I update a mobile
app to a new version. Sports teams experience it when they are on the road.
That’s why home field advantage exists; you get to play in your comfort zone.

There will always be a dip in productivity before there is a gain. It is a
natural result of introducing change, whether to processes, tools, or team
structure. A good transformation effort plans for this dip and takes steps to
ensure that it is minimized. Ultimately, it is a successful transformation if the
productivity lost (the shaded area in Figure 2-3) is minimal compared to the
productivity gained, once the productivity gain turns positive. Of course, all
this is moot if the productivity after transformation is not significantly higher
than that before the transformation effort.

Projects often never recover from the dip if the productivity loss becomes
too significant or goes beyond what the team was prepared for. A properly
planned transformation, with experienced coaches, is essential to prevent
this, to minimize the dip, and get to productivity gain as soon as possible,
with minimal investment of time and resources.

DevOps Adoption Playbook62

Mastery

Productivity with old technology

Learning

Productivity Dip

Time

Pr
od

uc
tiv

ity

Figure 2-3: productivity dip

The success of Agile coaches in driving Agile adoption across enterprises
has similarly been extended to the role of DevOps coaches to drive DevOps
adoption. Organizations from IBM to several DevOps consulting boutiques
have trained DevOps coaches who are embedded in project teams and orga-
nizations adopting DevOps.

The business drivers identified for the DevOps transformation also come
into play here because they are what should drive the Key Performance
Indicators (KPIs) that are being used to measure productivity in the first
place. These KPIs should be

 ■ Identified before the transformation starts (measures of success)
 ■ Taken as a baseline to know the current state
 ■ Set as goals for what the productivity KPIs should be post-transforma-

tion (end state)

I discuss different KPIs that should be measured for different adoption
plays in Chapter 3.

Just like you cannot win a game—or, for that matter, play a game—without
knowing where the goals are and what constitutes a score, you cannot suc-
ceed with a transformation without knowing what the KPIs that need to be
improved are, and by how much. Similarly, just as you cannot have a high-
performance team that wins championships without a good coach, and a good
coaching program, you cannot succeed with a DevOps transformation without
an experienced DevOps coach and a well-planned transformation roadmap.

Chapter 2 adopting devops 63

[A] perfect plan doesn’t mean that it ends up the way you want it to end up…. You
don’t get better if you win all the time. You get better when you lose. You improve
when you lose. You look at yourself more if you lose.

—Jeremy Lin, American NBA player

Initiating Adoption with Pilots
Executing on a DevOps transformation can be a very complex and large-scale
effort. Starting small to refine the DevOps adoption roadmap and show success
is essential to succeed at the enterprise scale. I discuss specific plays for scaling
for an enterprise in Chapter 5. However, to get started, you also need to have
a plan to achieve success upon which you can then build an enterprise-wide
adoption. This entails picking a set of pilot projects to execute the DevOps
adoption roadmap.

The way to start an enterprise-wide DevOps adoption is by starting with
three to five select pilot projects and then scaling up once the adoption road-
map is proven and enhanced, based on lessons learned from the pilot projects.
The goal of each project is to adopt one DevOps capability per project and
measure the impact of addressing the specific bottleneck that particular capa-
bility was intended to address. The reason you adopt just one capability per
pilot project is to be able to show a direct impact of the adopted capability on
the bottleneck it is supposed to address. Adopting more than one capability
per project does not allow for a direct assessment of impact.

The goal at the end is to show success and capture lessons learned that
you can then leverage to get even better results for other projects, as adoption
expands. As I have mentioned, identifying the right KPIs for the business
goal being targeted, taking a baseline before starting the pilot project, and
then tracking the KPIs through adoption is essential to show results—good
or bad—and make adjustments to the adoption plan, as and when needed, as
the project progresses.

Each pilot project should have a dedicated or shared DevOps coach assigned
to it. Whether the project team needs a dedicated coach or a shared one
depends on the size of the project team.

The best approach to leveraging pilots is to pick projects that are important
to the business, but not mission-critical. You don’t want a project that is not
of any significant value to the organization, such that it does have the right
team members and funding allocated. You also do not want a project that
is too large in size and geographic distribution or that is so mission-critical

DevOps Adoption Playbook64

that it can jeopardize important business functions if the project runs into
issues or becomes delayed as a result. Once the pilot projects succeed and you
have analyzed what worked and what didn’t, you can extend adoption to any
project, including large, mission-critical projects, of any size and geographi-
cal distribution.

Overcoming Cultural Inertia
Ultimately, even after all the process improvement and automation is intro-
duced in an organization, it can only succeed at adopting the culture of DevOps
if it is able to overcome its inherent cultural inertia. Most organizations have
inertia—an inherent resistance to change. Change is not easy, especially in
large organizations where the culture may have had years to develop and per-
meate across hundreds, if not thousands, of practitioners. These practitioners,
as individuals, may appreciate the value of adopting DevOps, but as a group,
they may resist change and thus have inertia. Overcoming this inertia is key.

How is this inertia exhibited? “This is the way we do things here.” “Yes, but
changing X is not in my control.” “You will need to talk to Y about that; WE
cannot change how THEY work.” These are just some examples of phrases and
behaviors that are symptomatic of cultural inertia. Over time, organizations
develop behaviors; teams and groups divide up actions and responsibilities
along organizational lines; checks and balances are established in the name
of governance, which are not related to true governance at all; processes exist
but no one know why—they are “just there”; reports are produced that no
one reads anymore, but no one is willing to do away with them; bad things
happened in the past and resulted in approval requirements to ensure they
would never happen again; and so on. All these behaviors build up inertia in
an organization’s culture.

Overcoming cultural inertia requires a serious look at every artifact and
process that may cause the organization to become inefficient—the root causes
behind every bottleneck and identified waste. Addressing these bottlenecks
requires change beyond just traditional DevOps practices. It requires a desire
to change the culture from both the executive leadership that is sponsoring
and leading the transformation and the practitioners who are executing the
transformation. The leadership needs to provide cover for the practitioners
who are changing how things are done, which will impact those outside the
team executing the changes and potentially break legacy governance practices.
The practitioners also need to break their habits; they need to break out of
their functional silos, and they need to be the agents of change.

Chapter 2 adopting devops 65

SponSorShip and engagement

No DevOps play can be adopted effectively, and will certainly not deliver
at its full potential value, unless it is adopted with such a top-down
and bottom-up approach and engagement to address cultural inertia.
Top-down sponsorship is needed to initiate and drive the transforma-
tion. Bottom-up buy-in and engagement is needed to actually execute the
transformation.

I will discuss how the leadership can sponsor and drive the DevOps
Transformation in detail in Chapter 6.

An example roadmap, developed for a real (anonymized) client using the
techniques described in this chapter, is documented in Appendix A.

Summary
To summarize, adopting DevOps is not unlike a coach and players of a sports
team preparing for, playing, and (hopefully) winning a match. The coach
and team’s leaders need to study the playing conditions and the opposing
team to understand their own strengths and weaknesses, given the condi-
tions and competition. They then need to pick the right plays from their
playbook and then practice. The real work is the practice of the plays till
they are perfected. Till the dip in their paying ability due to the plays being
new, or the inertia from previously playing different plays is overcome. Till
running the plays in the actual game becomes no different from practice.

Similarly, adopting DevOps requires:

 ■ Defining the target state
 ■ Understanding the current state
 ■ Picking the right plays to get from the current state to the target state
 ■ Preparing to address the dip
 ■ Working on top-down and bottom-up sponsorship and engagement to

overcome cultural inertia

I will cover all of these in the rest of the chapters of this book.

The Business Case for The GrowTh of Major LeaGue soCCer

If you’re looking for a sporting example of an organization managing fast
growth, here’s an unexpected one: Major League Soccer.

As soccer’s popularity continues to grow stateside, MLS has added nine
new clubs since 2007 (two of which, the most recent additions, will begin play
in 2015). Meanwhile, the league’s average attendances now rival those of the
National Hockey League and National Basketball Association, and TV ratings—
though they dipped in 2013—have significantly grown from a decade ago.

This success has translated financially, too; the Columbus Crew sold for
more than $60 million—a solid midmarket number that, though it pales
in comparison to the valuations for Major League Baseball and National
Football League teams, is a record for an MLS club.

With 18 seasons now in the books, MLS is on the verge of breaking into
the pantheon of America’s major league sports. But it still faces its chal-
lenges, from competing with global soccer to growing its core audience.
Commissioner Don Garber spoke to Inc. about lessons from the league’s
recent growth stage and how it plans to keep it going.

With fast growth comes the capacity to run off the rails. To that end,
it’s important to keep measure of success—and be quick to diagnose
when something might go wrong. MLS keeps tabs of its key performance
 indicators—which Garber listed as national and local television and media
coverage, the development of soccer-specific stadiums, as well as TV ratings
and stadium attendance figures.

ChapTer 3

Developing a Business
Case for a Devops

Transformation

continued

The DevOps Adoption Playbook: A Guide to Adopting DevOpsin a
Multi-Speed IT Enterprise
By Sanjeev Sharma
Copyright © 2017 by John Wiley & Sons, Inc., Indianapolis, Indiana

DevOps Adoption Playbook68

While these indicators are all way up in the last several years, the latter
two—ratings and attendance—did dip during the 2013 season. To that end,
Garber and MLS were quick to identify the problems for the hiccup: One
team performed particularly poorly in terms of attendance, while there is
room for improvement in TV broadcasting. The timing on that front is good,
as the league’s TV rights are currently on the open market.

Garber says that with the reasons for the dips identified, the league still
feels confident in its overall plan. The occasional breakage that comes with
speed doesn’t mean scrap everything. It means analyze and adjust where
needed.

“We work to create a plan for the year and then go from the top down,
working with the (club) owners to make sure we have the resources to be
able to achieve that plan. That approach has worked very well for us over
the last number of years,” Garber says. “Now and then you’re going to hit
some bumps in the road and you have to be smart, nimble, and focused to
adjust your plan to some of the market macro-issues and micro-issues.”

—Vaccaro, 2014

continued

The executives leading a DevOps transformation are responsible for devel-
oping the case for undertaking the DevOps transformation and then selling
it to the organization (the CEO, CFO, and potentially the board). During the
course of this book, several compelling reasons to act will be documented
that may be the triggers or catalysts that can be leveraged to initiate a DevOps
transformation. I will present an entire module on these compelling reasons
to act in Chapter 7. However, you still need to make the right and compel-
ling business case. The business case not only delivers to the organization
the value proposition, in business terms, to make the necessary investments,
but it also ensures that the investments are made continuously to ensure that
the transformation gets the requisite time and resources required to have an
impact on the business. DevOps adoption, after all, is not a one-time project,
but an ongoing transformation.

Developing the Business Case
It is a given that DevOps capabilities make the application delivery pipeline lean
and efficient by optimizing processes, tools, platforms, and culture. However,
businesses require a business case with tangible numbers to show what the

Chapter 3 Developing a Business Case for a Devops Transformation 69

return on investment (ROI) will be for them. What business value can they
achieve by adopting DevOps?

There are several techniques that can be leveraged to arrive at such busi-
ness value numbers:

 ■ Case studies. Several case studies have been done by vendors and solu-
tion providers on how their DevOps tools, platforms, and transforma-
tion services deliver business value and ROI. These can be leveraged
by examining a case study of a similar organization that has adopted
DevOps and the business value and ROI that they were able to achieve.
It also adds value to speak with that organization, if they are open to
sharing their experiences and lessons learnt, on their journey to achiev-
ing the target business value.

 ■ Analyst studies. Several studies have also been done by external analyst
firms. Forrester, for example, does Total Economic Impact (TEI) studies
for tools and practices (Forrester, 2013, 2015). These can be leveraged
to develop an assessment of the business value that can be gained by
your own organization.

 ■ Value stream mapping. I describe value stream mapping (VSM) in
Chapter 2 in this book. The intent in this book has been to showcase
VSM as a technique to identify areas of waste in the delivery pipeline
and to develop a DevOps adoption roadmap to address them. However,
you can do a much deeper VSM assessment that goes into time and
motion type studies to not just identify areas of waste but also to quan-
tify the actual loss in productivity that is occurring as a result and in
which areas. You can then create a value map that maps addressing the
area of waste to financial returns.

 ■ Business Value Assessment. The Business Value Assessment (BVA) is a for-
mal approach to develop a value map of the DevOps capabilities being
adopted to map these capabilities to tangible financial returns. The BVA
tool used by most suppliers (vendors and solution providers) has a pre-
defined formula built in to calculate cumulative costs of current practices
(using the adopted tools, platforms, and processes) and then to calculate
the costs of adopting (acquiring, deploying, getting training, and using)
the DevOps tools, platforms, and practices being targeted for adoption.

While all the techniques described previously can be used when adopting
DevOps for projects focused on innovation (more on the distinction between
DevOps for optimization vs. innovation in the next chapter), there is an

DevOps Adoption Playbook70

additional “twist” to consider here. In most cases, the innovative solution
being developed is going to be arrived at through a series of experiments.
These experiments may be for innovative technology solutions or business
models, or very often for both. As a result, the business case being developed
cannot be very tangible. You cannot calculate true business value given all
the unknowns that are driving the need for experimentation in the first place.
As a result, you need to build a business case like a venture capitalist. This is
someone who invests small amounts in several ideas via startups, with the goal
of making significant returns on the one startup that goes big and succeeds.
This will make a return not only on the investment on that particular startup
but also on all the lost investments for all the startups that did not make it.

Several techniques have been developed to attempt to understand the busi-
ness value of an idea in its early stage, before development even begins. These
techniques help to define the idea, determine the investment required, and
quantify the potential business value to the customers and the business.

Focusing away from the technology and just on the business model of the
idea raises interesting questions for a technology organization on how to
determine even the idea’s viability, much less its business value. One technique
that has gained traction in the Lean startup space is Business Model Generation,
introduced by Alexander Osterwalder and Yves Pigneur, in their book by the
same name (Osterwalder, 2013). Among other techniques, the book uses a
Business Model Canvas to define, understand, and refine the components of a
business model, including the business value to the organization.

As shown in Figure 3-1, the canvas has nine components, each of which con-
tribute toward defining the business model, helping to refine it further, deter-
mining its viability, and understanding associated risks, required resources,
and ultimately the business value. These components are as follows:

 1. Customer segments. Who are the customers being served?
 2. Value propositions. What are the various value propositions of each

problem being addressed, for each customer segment?
 3. Channels. What are the various modes of delivering the value

propositions?
 4. Customer relationships. What customer relationships are established as

a result of engagement with each customer segment?
 5. Revenue streams. What sources of revenue result from each value

proposition?
 6. Key resources. What are the resources required to deliver the value

propositions?

Chapter 3 Developing a Business Case for a Devops Transformation 71

 7. Key activities. What activities need to be performed to deliver the value
proposition, with the identified resources?

 8. Key partnerships. Who are the partners, vendors, and suppliers who
need to be partnered with in order to deliver the value propositions?

 9. Cost structures. What are the costs of the investments and resources
that need to be committed to deliver the value propositions?

Figure 3-1: Business Model Canvas1 (strategyzer, 2013)

This approach provides a comprehensive model for each idea being consid-
ered for investment by the organization, allowing them to make an intelligent
decision as to whether to invest in it. In the context of DevOps, this canvas
can also be used to develop a business model for the value proposition for
undergoing a DevOps transformation.

Completing the Business Model Canvas
Next, let’s fill in these components to create a business model. This will allow
you to build a Business Model Canvas for a DevOps transformation, which
an executive sponsoring the transformation can then leverage to develop a

1 Reproduced under Creative Commons license. License terms available here: https://
creativecommons.org/licenses/by-sa/3.0/. The Business Model Canvas can be down-
loaded from https://strategyzer.com/canvas/business-model-canvas

https://creativecommons.org/licenses/by-sa/3.0/
https://creativecommons.org/licenses/by-sa/3.0/
https://strategyzer.com/canvas/business-model-canvas

DevOps Adoption Playbook72

business case. You can leverage the rest of this chapter as a guide to follow
along and fill in your own Business Model Canvas and develop a DevOps
Business Case for your organization.

For the purposes of this exercise, I am going to look at the Business Model
Canvas from the perspective of both the line of business (LOB) and the IT
organization, building in essence two separate canvases.

Because this is in the context of a DevOps transformation, only IT
capabilities delivered by the organization are included. If the organiza-
tion interacts with customers by delivering services that do not require
IT applications or services, those services will be considered outside the
scope of this exercise. For example, if a bank delivered cash to an organiza-
tion for payroll, the software used to request and manage the cash would
be within scope. The actual delivery service, delivering cash via a secure
truck service, would not.

Customer segments
This section captures the customers being served by the organization. As
described previously, you need to look at who the customers are from the
perspective of both the line of business and the IT department. Both have
different customer sets.

Line of Business
For a line of business, the end goal is to deliver business capabilities to your
end-users and customers. Thus, your customer segments are as follows:

 1. End-users. An end-user is anyone who uses the application that is being
delivered. They are different from customers because they may not be
the ones who are generating any direct revenue for the organization (see
definition 2, “Customers/clients”). For example, for social media apps
like Facebook, Twitter, or Pinterest, the end-users do not pay to use the
service. While these companies may monetize the data they collect as
a result of these end-users utilizing their services, their real customers
are the ones who pay for their services. These end-users themselves may
be multiple sub-segments based on demographics, geography, usage
level, and so on.

Chapter 3 Developing a Business Case for a Devops Transformation 73

The distinction between end-user and customer is something that
confuses many people. Let’s look at a company like YouTube. An end-
user is anyone who views or even posts videos. However, YouTube also
has a segment of end-users who are power-users. These users post
videos that get so many views that they are able to participate in a
revenue-sharing program with YouTube. As a result, these end-users
should definitely be considered a separate customer segment. Whether
YouTube considers them end-users or customer-clients depends on their
classification approach.

 2. Customers/clients: The customer or client for an organization is someone
who pays them for the services their applications deliver. In the example
of social media apps, the customers are the advertisers who pay to put
advertisements on the apps in order to target end-users. Here it is also
important to recognize that the customers may have their own custom-
ers. This is typical for a business-to-business (B2B) application, but
it may also be true for other platform offerings. The customer of the
organization’s primary customer is the eventual end-user. For social
media sites, for example, if a customer builds an app on their platform
that is used by others, then the end-users of the app are the customers
of the app vendor and of the social media platform. Both the app vendor
and the app end-users are also, in parallel, still the social media sites’
end-users. Think of a game like FarmVille, which runs on Facebook.
FarmVille users are the customers of the maker of the game, Zynga,
but they are also Facebook end-users. Zynga, in turn, is a Facebook
customer.

 3. Customer representatives. In many cases there may be employees or part-
ners who are the touchpoint between the organization and its end-users
and customers. These customers interact with the organization through
human representatives, who in turn consume the digital applications
and services being delivered. In any non-digital customer interactions,
it is these employees who are therefore the customer segment for the
LOB. Examples would be tellers, customer service representatives, and
agents (employees or external partners). As a customer segment, they
need to be treated as surrogates for the final non-digital end-users and
customers and offered appropriate business value in a manner that they
can pass on to the end-users and customers.

DevOps Adoption Playbook74

There is no real parallel here for social media. The closest would
be a celebrity, executive, or company hiring a social media manager
or team that interacts with social media on their behalf. However, for
social media, this user is no different from the end-user or customer
they represent. But for a bank that has bank tellers in its branches or
an insurance company that sells through independent franchisee insur-
ance agents, there would be a difference in the nature of interactions
that they have with the organization, requiring them to be treated as a
separate customer segment.

iT organization
For an IT organization, the lines of business are actually the key customer
segments. Of course, all of the LOB’s customer segments are indirectly the IT
organization’s customer segments too. In addition, the IT organization has its
own internal and external customer segments:

 1. Internal end-users. These include employees, contractors, and partners
who consume IT services as end-users from within the organization.
This would include the consumers of business-to-employee applications
and services (e-mail, internal websites and portals, HR applications,
payroll, and so on).

 2. Application delivery stakeholders. These are all the people working as
stakeholders on the application delivery pipeline: developers, QA, Ops,
business analysts, architects, and security—all the people who are
stakeholders in DevOps, as I discuss in previous chapters. Examples
of key application delivery stakeholders include the following:

 ■ Developers
 ■ Testers
 ■ Operations
 ■ IT executives
 ■ Business owner (from the LOB)

 3. Customer IT organizations. These would be IT organizations of cus-
tomers who consume delivered IT services in order to develop and
deliver their own value-added applications and services. Examples of
key stakeholders for customer IT organizations would be the same roles
as those listed in the previous definition, except that they would be
employees of the customer organization.

Chapter 3 Developing a Business Case for a Devops Transformation 75

In my earlier social media example for Facebook, this would be the
IT organization at Zynga.

Value propositions
Next, for the line of business and the IT organization, you need to determine
the value proposition delivered for the multiple problems addressed, for each
of the customer segments identified previously.

Line of Business
For each customer segment, the LOB needs to understand and define the
myriad value propositions it wants to deliver.

 1. End-users: The value propositions being delivered will vary for each
subsegment of end-user identified. They will also depend on the type of
business functions that are being delivered. Are these traditional func-
tions that need to be optimized, or are they new, innovative functions,
where the right requirements, business models, and delivery models are
still being discovered, defined, and refined through experimentation?
These value propositions for the LOB include the following:

 ■ Business functions need to be made available to the end-users
by which they can acquire the business value the LOBs want to
deliver to them.

 ■ Business functions need to be made available in a manner that
aligns with the way the various customer segments want to con-
sume them.

 ■ Updates to the business functions need to be made on a regular
basis to align with the changing needs and expectations of the
various customer segments.

 ■ Experiments need to be run to determine the user experience
for the various segments.

 ■ Experiments need to be run to refine engagement and business
models for new customer segments.

 ■ Business functions need to be delivered to the customer seg-
ments in a way that is superior to the competition.

Let’s continue with the example of a social media website. YouTube,
as I described earlier, has regular users as well as power-users who are

DevOps Adoption Playbook76

actually paid on a revenue-sharing basis for posting videos, based on
views received. The value proposition for a regular user is simple: to
be able to view videos that are available in their geographic and legal
jurisdiction, with the right resolution, quality, and speed. They should
also be able to subscribe to other users, leave comments on videos, share
videos on other social media sites, and (the ultimate endorsement on
a social media site) “like” a video. In addition, they should be able to
post videos by easily uploading them in multiple supported formats
and resolutions. The power-users, on the other hand, should receive
the value propositions of regular users and also the value proposition
of being able to generate revenue from their videos based on advertise-
ments that are served to regular users. They should be able to upload
high-quality videos, be able to access clear metrics on views and income
generated, be able to control the types of advertisements served and
advertisers allowed to deliver them, and, of course, be paid in an accu-
rate and timely manner.

 2. Customers: Customers or clients are those who actually pay for services.
Thus, the core value proposition delivered to them would be to receive
all the value propositions of end-users and to be able to get the busi-
ness value they are paying for. The list of value propositions delivered
include:

 ■ Deliver business functions at a competitive rate, vis-à-vis the
market.

 ■ Deliver business functions at well-defined service levels, agreed
upon with the customers. There may be multiple service levels,
based on different pricing models and tiers.

 ■ Make several pricing models available for various customer
segments.

 ■ Experiment with pricing and acquisition models to validate the
pricing models for various customer segments.

For customers who are developing applications and services for their
own end-users and customers, by leveraging the applications and ser-
vices delivered by the organization, the value propositions will also
include the ability to consume the right applications and services with
which to deliver their own value propositions to their end-users and
customers.

Chapter 3 Developing a Business Case for a Devops Transformation 77

 3. Customer representatives: Because customer representatives are really
surrogates for the end-users and customers engaging with them, the
value propositions will generally remain the same. In addition, there
will be the value proposition related to the customer service aspect of
their role. They should be able to deliver business value with the highest
level of customer satisfaction—higher than any tool. They also need to
be able to answer questions asked by the end-users and clients, related
to the organization and all it offers. The applications and services deliv-
ered to the customer representatives thus need to deliver a broader level
of interaction than the direct end-user or customer applications and
services.

iT organization
From a DevOps perspective, the value propositions being delivered by the IT
organization will depend on the business goals the organization has on how
it intends to deliver the business value to all its customer segments. The vari-
ous value propositions for end-users and customers (internal and external)
can include the following:

 ■ High-quality (defect-free) applications and services delivered
 ■ Easy onboarding of new users
 ■ Easy account closing and deletion of users wanting to leave
 ■ Ability to import user data from another app
 ■ Ability to migrate user data to another app
 ■ Fast response to end-user issues and customer support requests
 ■ High availability—minimal outages to service, including for mainte-

nance (for example, the Facebook website never goes down for “sched-
uled maintenance,” even for upgrades)

 ■ No user data loss
 ■ Compliance with all regulatory and legal requirements
 ■ Access options for users with disabilities
 ■ Globalization with support for multiple languages and currencies
 ■ Data and privacy protection of all users and customers
 ■ Secure services
 ■ High customer satisfaction

DevOps Adoption Playbook78

The value propositions for the IT employees and suppliers who are stake-
holders on the application delivery pipeline will include the following:

 ■ High availability, and stable and secure infrastructure and platforms
 ■ The right application delivery tool chain, with well-integrated tools
 ■ End-to-end traceability and visibility across the delivery pipeline
 ■ Ability to leverage the right Agile and DevOps practices and processes
 ■ Ability to communicate and collaborate across functional silos and

delivery pipelines

Let’s look at the examples of the key stakeholders listed in the previ-
ous section and identify typical examples of value propositions for each
of them.

For developers:

 ■ Ability to use automated build, testing, and application deployment to
deliver changes to an application or service into production in a two-
week sprint

 ■ Ability to quickly assess the performance and functional characteristics
of the applications or services delivered, so as to improve the same in
future sprints

For testers:

 ■ Ability to deploy a new version of an application or service to a “production-
like environment” and test it using automated tools and validated
test data

 ■ Ability to provide feedback to developers on issues that are identified,
such that they can re-create the issues in a timely manner

For operations:

 ■ Efficiently deliver fully automated IT processes and environments in
order to balance risk and cost, with a step-change improvement in
quality and speed

 ■ Efficiently predict and prevent production outages by exploiting ana-
lytical and cognitive operational systems that dramatically improve the
quality of service and reduce the cost of operations

Chapter 3 Developing a Business Case for a Devops Transformation 79

For IT executives:

 ■ Access metrics dashboards to gain insight into the aggregated per-
formance of all the applications and services being delivered, and the
environments they are delivered on

 ■ Access metrics dashboards to get detailed performance metrics on
individual stakeholders and practitioners working on the application
delivery pipeline

 ■ Continuously improve application delivery processes, tools, platforms,
and team culture to improve time to value

For the business owner (from the LOB):

 ■ Experiment with new ideas in the marketplace to create differentiated
client experiences and identify new business opportunities

 ■ Access business dashboards to gain insight into the aggregated per-
formance of their business units in order to improve business results
(revenue and cost)

 ■ Access feedback on user behavior and sentiment when consuming
applications and services delivered to determine how to improve
customer engagement and satisfaction and increase business value
delivered

For the customer’s IT organizations, the value propositions would include
the following:

 ■ Highly available, stable, and secure services via well-defined APIs and
services

 ■ Fast response to issues and customer service requests
 ■ Fast response to new requirements and enhancement requests
 ■ Well-defined roadmaps and visibility into future capabilities

being added, modified, or removed from applications and services
delivered

All of these value propositions are, of course, highly subjective and
vary by application type and customer segment. They all typically mani-
fest as nonfunctional requirements for the applications and services being
delivered.

DevOps Adoption Playbook80

Channels
The channels are the various ways the organization delivers the value proposi-
tions to various customer segments.

Line of Business
For the lines of business the applications and services delivered by the IT
organization are typically the sole set of channels by which they deliver the
value propositions previously documented to the customer segments. These
channels include:

 ■ Applications and services being delivered that are consumed directly
by the end-users and customers (web, mobile, desktop, and so on)

 ■ Applications and services that are consumed by representatives who
interact with end-users and customers

 ■ Services being delivered (APIs, platforms, data sources, and so on),
consumed by the customers in order to develop and deliver their own
applications and services

iT organization
The channels for the IT organization are the same as for the LOB. It is the IT
organization’s responsibility to deliver all the applications and services needed
to enable these channels. IT is therefore responsible for all the channels.

Customer relationships
Next you need to capture the customer relationships that get established,
developed, or enhanced as these various value propositions are delivered, via
the channels, to each customer segment.

Line of Business
The lines of business own the customer relationships for the three types of
customer segments identified:

 ■ Existing customers with existing relationships
 ■ Existing customers with relationships being explored or developed
 ■ New customers with new relationships

Chapter 3 Developing a Business Case for a Devops Transformation 81

LOBs improve customer relationships through better customer service and
improvement of the user experience.

iT organization
The goal of the IT organization is to enable these customer relationships through
their applications and services. In addition to the LOB customer relationships,
the IT organization has additional customer segments with their own relation-
ships in all three categories, as I described previously for the LOBs.

IT organizations improve customer relationships by improving the experi-
ences of all stakeholders, across all customer segments, and empowering them
to participate in continuous improvement of the applications and services being
delivered, and the processes, tools, platforms, and organizational culture of
how they are delivered.

revenue streams
For any business, a key result of delivering value to its customers is revenue.
You will hence need to capture all the various revenue streams that can be gen-
erated from each customer segment. It is important to note here that revenue
may not be the end goal of the organization. A government agency delivering
value to its citizens may not be looking to generate revenue as a result (out-
side of taxes and fees) but will need to identify some metric(s) to measure the
“return” for the value being delivered.

Line of Business
The goal here is for the LOBs to do the following:

 ■ Improve existing revenue streams
 ■ Develop new revenue streams by experimenting with new capabilities

and new business models
 ■ Develop new revenue streams by monetizing existing and new busi-

ness capabilities through partners who develop value-added services
by leveraging them

iT organization
The goal here is for the IT organization to do the following:

 ■ Optimize existing applications and services to maximize opportunities
to improve existing revenue streams

DevOps Adoption Playbook82

 ■ Enable the LOBs to experiment with new capabilities and business
models, and provide them with rapid feedback on the experiments

 ■ Deliver a platform for partners to leverage APIs and services delivered
to build their own solutions by leveraging them

Key resources
The resources leveraged by organization to develop and deliver the value prop-
osition will need to be documented next. These resources are also a measure
of investment and cost for delivering the value proposition.

Line of Business
The key resources available to the LOBs include the following:

 ■ Human resources across the organization, including the IT organization
 ■ Intellectual property (IP) developed and owned by the organization
 ■ Financial resources available to invest in the development and delivery

of applications and services
 ■ Relationships and partnerships

iT organization
The key resources available to the IT organization include the following:

 ■ Employees and contractors working for the IT organization
 ■ Partners and suppliers working with the IT organization, delivering

services
 ■ Intellectual property developed and owned by the IT organization
 ■ Processes, tools, platforms, and organizational culture developed and

maintained by the IT organization

Key activities
The next step is to document the various activities the resources need to
undertake to deliver the value proposition. These activities also drive the
investment and cost.

Chapter 3 Developing a Business Case for a Devops Transformation 83

Line of Business
Key activities for the LOBs include the following:

 ■ Deliver business value to customers through existing and new applica-
tions and services (channels)

 ■ Experiment with new applications and services, and with new business
models to improve user experience, capture new markets, and develop
new revenue models through partners and suppliers

 ■ Capture and analyze feedback from customer segments to continu-
ously improve business capabilities and user experiences that are being
delivered, channels through which they are delivered, and leveraged
business models

iT organization
Key activities for the IT organization include the following:

 ■ Develop and deliver applications and services to provide business value
to customer segments

 ■ Continuously improve the applications and services being delivered,
based on feedback from users and customers and guidance from
LOBs

 ■ Provide the ability to experiment with new features, user experiences,
and business models

 ■ Deliver APIs and services to partners and suppliers
 ■ Provide robust processes, tools, platforms, and organizational culture

to stakeholders working on the application delivery pipeline
 ■ Provide feedback to stakeholders working on the application delivery

pipeline, enabling them to continuously improve the applications and
services being delivered, the environments they are delivered on, and
the processes, tools, platforms, and culture that are leveraged to deliver
them

 ■ Provide feedback to the LOBs on application and service func-
tionality, performance, user experience, usage patterns, and user
sentiment

DevOps Adoption Playbook84

Key partnerships
Partnerships include all the business partners, vendors, and suppliers that con-
tribute toward delivering business value. They need to be documented next.

Line of Business
The LOBs have partnerships to fill in gaps and expand reach and access to
customer segments that they themselves cannot reach:

 ■ Partners. These are any other organizations that may leverage the ser-
vices being delivered by the organization to deliver their own value-
added services. In the case of social media apps, these are organizations
that leverage the services being delivered to deliver their own offerings
and services. Think of any company that uses Facebook or Twitter as
the way to log in to their website and that uses the Facebook or Twitter
identity to identify their user, instead of using a separate username and
login. Other examples include any third-party company that delivers
games (FarmVille) or their own apps (Periscope) on these platforms.
(Yes, there is overlap between customers and partners—many will be
both. Some competitors may also be partners.)

 ■ Suppliers. Suppliers also play a key role here. They fall under customer
segments or under key partnerships, or both, depending upon their
relationship to the organization. If it is a mutually beneficial partner-
ship, where the supplier is delivering key services enhanced exclusively
for the organization and the organization and the supplier are both
benefiting from the additional value they deliver together, then you
should include it as a customer segment. Again, staying with the social
media examples, if a sports organization (like the NFL) is streaming
its games on Twitter to gain access to new markets, then it is both a
customer segment and a key partner.

iT organization
The IT organization will also have partnerships to fill gaps and to expand
reach and access to technology capabilities and services:

 ■ Suppliers and partners who are stakeholders in the application delivery
pipeline. These are third-party suppliers and partners who deliver

Chapter 3 Developing a Business Case for a Devops Transformation 85

components of the application delivery pipeline but do so externally
from the organization. They include application service providers (SaaS
and APIs consumed); infrastructure or platform service providers (IaaS,
PaaS, and CaaS); and other technology providers and vendors.

 ■ Value-added partners. These are organizations that consume the
APIs and services delivered by the organization to deliver their
own value-added services. They are also a customer segment for the
organization.

Cost structures
Just like revenue generated, you need to capture all the costs and investments
that go into delivering the final value to all the customer segments.

Line of Business
The cost structures for the LOBs are mapped directly to the key resources I
listed previously. All human, technology, and IP resources have a cost. Some
might be capital expenditures (CapEx) and some operational expenditures
(OpEx). One of the goals for the LOBs is to manage these costs to maximize
profitability and return on investment (ROI).

iT organization
For the IT organization, each key resource that I identified earlier also has a
cost. IT organizations typically have significant costs associated with running
and maintaining existing applications and services. Today, most IT organi-
zations are working to optimize these costs to free up resources to invest in
innovation.

summary
The example provided in this appendix can form a template to fill out a
Business Model Canvas for an organization looking to build a business case
for a DevOps transformation. All the key components of the business case are
documented as you fill out the canvas. The canvas can also serve as a tool
to validate the approach used by the organization to deliver applications
and services to their customers and to validate the investments being made

DevOps Adoption Playbook86

in the applications and services. Some of these areas to validate are listed
as follows:

 ■ Do the way the applications and services are being delivered, the asso-
ciated costs, and the leveraged revenue streams justify the existing
application delivery models?

 ■ Should processes and practices be optimized to improve ROI?
 ■ Should the organization build or buy new applications and services?
 ■ What resources can the organization free up in order to invest in

innovation?
 ■ What investments need to be made to improve the processes, tools,

platforms, and culture of the organization?

As shown in Figure 3-2, this approach of leveraging the Business Model
Canvas, coupled with a value stream mapping exercise, across multiple delivery
pipelines, as illustrated in Chapter 2, to identify areas of waste in the appli-
cation delivery pipeline will allow you to fully construct a DevOps trans-
formation roadmap, and the business case to make the investment in the
transformation, for your organization.

Figure 3-2: Building a Devops adoption business case

Lob Business
Model Canvas

Customers

Stakeholders

It Business
Model Canvas

Multi-speed
Delivery

Value Stream
Map

Moneyball: Optimizing fOr innOvatiOn

The 2002 Oakland A’s should have been doomed. The A’s had a $40 million
budget to compete not only with the $125 million payroll of the Yankees
but against 28 other teams with average payrolls approaching $70 million.
As A’s General Manager Billy Beane (Brad Pitt) puts it in the movie (and
I’m paraphrasing from memory), “There’s rich teams, there’s poor teams,
there’s 50 feet of crap, and then there’s us.” It was an unfair game. Beane
informed his staff that if they were going to play like the Yankees off the
field when finding talent, then they would be losing to them on the field.

The only way the A’s could win in a world like this was to innovate
by finding new knowledge about how to win. Beane turns to Peter Brand
(Jonah Hill), an economics major from Yale who was not entrenched in
old-school baseball mentality. (The fictional character Brand is based on
Paul DePodesta, a Harvard economics major.) According to Brand, current
baseball thinking was medieval; beliefs about player value were shaped by
biases that caused players to be misvalued. This market inefficiency would
allow the A’s to field a competitive team within their budget by buying wins
for less.

Using statistical analysis and ideas popularized by sabermetrician Bill
James but largely ignored by baseball insiders, the A’s found good players
they could afford. They turned to three seemingly flawed players—Scott
Hatteberg (bad arm), David Justice (old), and Jeremy Giambi (unath-
letic with off-field issues)—who had one important skill that the market

Chapter 4

DevOps plays for
Optimizing the Delivery

pipeline

continued

The DevOps Adoption Playbook: A Guide to Adopting DevOpsin a
Multi-Speed IT Enterprise
By Sanjeev Sharma
Copyright © 2017 by John Wiley & Sons, Inc., Indianapolis, Indiana

DevOps Adoption Playbook88

DevOps as an Optimization exercise
It all boils down to optimizing for maximum results, in an environment of con-
straints. For example, you can study Moneyball and how the Oakland Athletics
put together a winning team in an environment of significant salary constraints
(the Oakland Athletics had the third-lowest team salary in the league, with only
the Tampa Rays and Washington Nationals having lower team salaries in 2002);
or you can read Gene Kim’s The Phoenix Project, which is a brilliant, must-read
business novel that introduces adopting DevOps in a typical IT project with all
the constraints that come with it; or you can go back and study the root source
in Dr. Eliyahu Goldratt’s business novel The Goal (which actually inspired The
Phoenix Project, and introduced the world to continuous improvement in a world
full of real and practical constraints). Regardless of which one you choose,
they all lead you to the reality of achieving success in the business world—you
have to innovatively optimize how you operate to maximize productivity and
to reduce waste within your operating constraints. Despite Dr. Goldratt refer-
ring to it as the Theory of Constraints, these sources are not examples of theory;
rather, they are examples of applying optimization to achieve maximum results,
from optimizing salary and skills for a sports team to optimizing within the
typical constraints that exist in IT and manufacturing domains.

DevOps is the latest in a series of attempts to introduce optimization to
the application delivery and broader IT domain. There have been many prior

undervalued: getting on base. The A’s found relief pitcher Chad Bradford,
who was unwanted because he threw the ball in an unconventional way
and not very fast. But Bradford stopped opposing players from getting on
base; it didn’t matter to the A’s how he went about doing it.

Many people have criticized Moneyball because of the A’s focus on saber-
metrics, which challenges many tenets of baseball’s hallowed conventional
wisdom. They argue its focus on numbers dehumanizes the game and
ignores the intangibles that only trained scouts can see. Though saber-
metrics is an element in the story, it’s not really what Moneyball is about.

More broadly, Moneyball is a story of innovating to succeed, or as Beane
puts it in the movie, “adapt or die.” Beane was an entrepreneur who was
innovating out of necessity.

—Bradbury, 2011

continued

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 89

attempts to apply the practices and lessons learned from Lean Thinking—
which had been applied successfully to manufacturing and other domains for
decades—to application delivery and IT operations. DevOps succeeds where
other movements have failed because all these prior attempts typically focused
on optimizing one or, at most, two functional areas of the application deliv-
ery pipeline, such as Dev-test (Agile), operations (Information Technology
Infrastructure Library or ITIL), or project management (Six Sigma). DevOps
succeeds because it takes a holistic approach of optimizing the entire delivery
pipeline, across all functional areas. In fact, it begins with the premise and
intent of transforming the culture of communication and collaboration across
functional silos and eventually eliminating the very existence of silos for all
practical purposes. (They may still exist from an organizational reporting
structure, which I discuss later in this and subsequent chapters.) DevOps
succeeds because it puts cultural transformation, which has an impact across
functional and organizational silos, above process and tools. DevOps is, before
anything else, a cultural movement. In fact, in Chapter 6, I discuss why large
organizations struggle with DevOps adoption, because these organizations
tend to put governance and process before culture.

In this and the next two chapters, I look at DevOps through a lens of a
sports team running plays to win—what DevOps plays can you run to adopt
the cultural, process, and automation practices needed to optimize your appli-
cation delivery pipeline, based on the constraints you need to operate under. I
will look at both technology-agnostic plays that everyone can adopt as needed
and at technology-specific plays that are tailored for specific technology-driven
needs and constraints. Furthermore, I will categorize these plays into whether
the business intent behind them is to achieve optimization or innovation. While
every innovation-focused application delivery effort needs optimization, the
reverse is not always true. When it comes to DevOps adoption, applications
focused on innovation as their primary goal require special treatment. (I dis-
cuss them at length in the next chapter.) This chapter focuses on optimiza-
tion. First, though, let’s fully explore this distinction between application by
optimization and innovation.

Business intent: Optimization versus innovation
Before you start looking at the various plays that you can adopt to achieve
progress on a DevOps transformation, it is important to understand that which
play you run depends not just on the bottlenecks you are working to address but
also on the core business intent of the applications the play is being executed

DevOps Adoption Playbook90

on. Organizations have two types of business intent: one focused on innovation
(with velocity and agility) and the other focused on optimization (stability
and continuity and also with velocity and agility). Classifying applications
being delivered into categories based on the business intents of innovation or
optimization helps you determine which DevOps play is likely to run well.

Based on these two types of business intent, applications in an organization
can be divided into two categories:

 1. The industrialized core that delivers core business capabilities—things
that keep the business going. Here the primary business intent is
optimization.

 2. The innovation edge, where experimentation happens in order to explore
and identify new business models and new customer engagement meth-
ods; in other words, the primary business intent is innovation.

There have been several attempts by the industry to categorize applications
or IT in general as being two-speed or bimodal. These categorization efforts are
based either on speed or on how much the requirements change. Two-speed
IT implies that some applications go faster, and others slower. Speed, however,
is not the best metric to categorize by. Bimodal, on the other hand, implies
that the requirements of applications are either stable or ever changing. Both
of these classification approaches are limited. Reality is more of a “normal
distribution” than bimodal.

 ■ Classifying an application just by speed does very little, as some very
stable applications are able to deliver changes very quickly; mainframe
applications that have been around for decades and are extremely sta-
ble, with a team of developers who know them inside-out, can deliver
updates very rapidly. On the other hand, an innovative app, developed
using Agile and a modern language, leveraging a Platform as a Service
(PaaS), may start very slowly if the team is new to the platform or
technology stack.

 ■ How often and how much requirements change is also not a very good
measure, though it is better than speed. Even well-understood business
systems, like a core banking system in a bank, may have ever-changing
requirements in today’s environment of ever-changing banking regula-
tions and geopolitical upheavals. On the other hand, a new social media
app may have extremely well-defined requirements—for example, to get
more users to post more selfies with cool filters—that change very little.

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 91

Business intent is a much better measure. Ultimately, delivering business
value is what IT organizations do. What better categorization, then, than
what kind of business value needs to be delivered, irrespective of speed or
requirement churn?

Another way of looking at the Optimization versus Innovation categoriza-
tion is to look at it from a perspective of risk. The applications that deliver
core business services have a lower risk tolerance and hence need to be on
the optimization track. Innovative apps, on the other hand, have a higher risk
tolerance. They hence can be delivered in a manner that allows for failure in
order to be able to experiment.

A good sports analogy to explore when looking at the two “optimiza-
tion core” and “innovation edge” models is American football. Unlike most
 continuous-play sports (like soccer, basketball, volleyball, hockey, and so
on), where the same set of players switches between operating in offense or
defense modes, in football, there are two entirely separate rosters of players
who switch being on the field, when a team switches from offense to defense,
and vice versa. These are all different players who play differently, have dif-
ferent coaches, different training regimes, and, above all, different playbooks.
Yes, there are offense and defense specialist players in most sports, but only
in football are there completely separate rosters.

Industrialized Core
The applications that fall under the broad category of industrialized core
are the core systems of an organization. They are what keep the business
going—keeping the lights on, as they say. The business models being deliv-
ered here are well understood. The methods to engage with users are also
well understood. Such applications are typically large and complex, as most
have been around for a while. They have certain characteristics that make
them similar in nature. Some examples of these characteristics include the
following:

 ■ Business models and user engagement models are well understood, even
though specific requirements may keep evolving or changing.

 ■ They are usually delivered at a steady, well-defined cadence, at the rate
at which the business can consume the changes and updates.

 ■ Success is measured by measuring their stability and uptime.
 ■ Because they have been around for a while, they typically have mono-

lithic architectures.

DevOps Adoption Playbook92

 ■ They are diverse in the technologies they use. As technologies evolve,
newer apps in the core adopt new technologies, while the older ones
still remain in operation.

 ■ These models usually have separate Dev and Ops teams, and there is
a formal hand-off to Ops, beyond which the Ops owns the running of
the application.

 ■ Ops is king here. IT service management and ITIL are what drive day-
to-day operations.

 ■ If things break when in production, the Ops team owns bringing the
application up again.

 ■ Environments are hybrid in nature, with myriad technologies and
platforms, including legacy systems, that the organization may want
to retire.

 ■ Optimization is the game here—to achieve agility, velocity, and
efficiency.

Innovation edge
The innovation edge is made up of applications that have been, or are being,
developed to drive innovation—to experiment with new business models, to
capture new markets by experimenting with new user engagement models,
and to leverage new technologies and modern application delivery architec-
tures. They are the drivers of growth for the organization. They are typically
small and based on modern technologies and platforms. They use techniques
from the Lean startup approach—like minimum viable product (MVP) and A/B
testing to run these experiments with business models, and design thinking
to develop user experience and user engagement models—to continuously
innovate, based on real-time user feedback. (I discuss all these techniques at
length in Chapter 5.) They also have certain characteristics that make them
similar in nature, including the following:

 ■ Business models and user engagement models are not well understood,
and requirements need to be improved upon by experimentation and
getting rapid user feedback.

 ■ They are delivered in a continuous manner, to do experimentation
with new features and user experiences, leveraging techniques like
A/B testing.

 ■ They are measured for their ability to deliver changes fast, in response
to feedback from users.

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 93

 ■ They are typically built using polyglot languages, picking the right one
for the functionality needed.

 ■ They use modern architecture like cloud native and microservices.
 ■ The Dev team is king here.
 ■ The goal is to abstract infrastructure concerns away from the developers

by leveraging a PaaS, with which developers can leverage cloud services
to deliver their nonfunctional requirements (NFRs).

 ■ The developers are responsible not just for building the application
but also for running the apps. If the app goes down, they bring it up.

 ■ Innovation is the game here—organizations experiment with new ideas,
features, and business models.

It should never be the technology that determines which category an appli-
cation belongs to. The classification criterion should be limited to business
intent alone. The risk versus business value profile of the application should
also be looked at to determine this business intent. An application deliver-
ing a highly regulated system, and thus having high value and high risk, will
typically lie in the industrialized core, even if it is being delivered on a PaaS
using microservices and is written using modern languages like Node.js and
Go. Conversely, a service written in Java can be a component of an innovative
app that is designed to be a minimum viable product to validate a new busi-
ness model and will typically lie on the innovation edge.

The innovation edge is referred to as an edge because in typical large
organizations, innovation is only occurring at the “edges” of the organiza-
tion. In fact, some organizations may just have an innovation sliver. This is
because a typical IT organization spends most of its budget on running and
maintaining existing systems, not on innovation. The optimization of the
industrialized core is thus essential to drive innovation. It frees up resources
to invest in innovation, and furthermore, the optimization ensures that slow,
nonresilient systems in the industrialized core do not become a drag on the
ability to innovate at speed.

Just like the sport of (American) football had to develop the understand-
ing of how players on offense and defense rosters of the same team needed
to be trained to play in different ways and coaches needed to develop dif-
ferent plays for offense and defense, in IT, organizations need to categorize
their applications and systems being delivered into industrialized core and
innovation edge and then form and organize teams based on the needs of
each category of applications. The platforms and environments should also

DevOps Adoption Playbook94

be properly matched to the type of application. As I suggested earlier, the
industrialized core can have any kind of environment, from traditional IT
systems to cloud and from mainframe to mobile. The goal is optimization of
the environments and platforms. For the innovation edge, a platform-based
environment is essential. Cloud-native applications are what give the most
speed and agility to allow for the experimentation and speed of innovation
that is needed. Teams that are familiar with these modern architectures,
and with associated modern development practices, are essential. I discuss
Platform as a Service (PaaS), containers, and cloud-native development with
microservices in the next chapter.

It is important to note that these two categories of applications to deliver
business capabilities are truly joined at the hip. Outside of a startup where
there is no pre-existing core system, systems delivered on the innovation edge
are dependent on the services provided by the industrialized core to deliver the
innovations they are developing. As I stated before, because the industrialized
core typically consumes most of the budget in typical large organizations, it
needs to be optimized to free resources for innovation.

Consider a typical mobile application (say, mobile banking). To deliver that
application, there is a team charged with developing the mobile front end.
These kinds of applications are developed and delivered in the innovation edge.
Does all of the data and business logic sit on your mobile phone when you use
that application? Of course not. Most likely, the business logic and certainly
the data are components of the application that are delivered by pre-existing
systems or services in the industrialized core. So, the mobile application is
hybrid, comprised of components running in both sides. To deliver even some
experimental features of this mobile app, the company needs to release a
hybrid or composite application, incorporating components delivered by both
the innovation edge and the industrialized core.

Thus, the industrialized core and innovation edge are not two segregated,
horizontal siloes, with completely separate teams. That would defeat the
very purpose of DevOps adoption. Even in football, both offense and defense
rosters are ultimately one team, with one goal, and they need to complement
each other. They always have one head coach who leads it all, one general
manager who runs the business, and one team goal: to win the next game,
and the next. . . . Similarly, in the industrialized core and innovation edge
models, there is really a continuum between the two sides. They are co-
dependent, with the same overall business objectives, and they need to align
how they operate.

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 95

Core themes
Some people try to find things in this game that don’t exist but football is only two
things—blocking and tackling.

—Vince Lombardi, American football player and legendary coach

There is a set of core themes that have their roots in Lean and form the basis
of most of the DevOps plays represented in this book. Before going into the
plays themselves, it is essential to understand these themes and appreciate
their importance as the core of DevOps. As I present the various plays, these
themes will appear interwoven across them all. They are the blocking and
tackling of DevOps. The themes are as follows:

 ■ Minimizing cycle time
 ■ Reducing batch size
 ■ Establishing the right culture

minimizing Cycle time

reDuCing the COaChing “CyCle time”

The WTA can deliver deep analytics in real-time to coaches at WTA events,
allowing them to interact with the athletes live, during the match, instead
of waiting to discuss such deep analytics and strategy afterwards.

Coaches are armed with tablets containing the analytics needed to beat
the competition; and they are able to walk this information onto the court
and discuss it with their players.

The app provides tendencies; it shows the speed and direction of a serve,
speed of strokes, where the stroke pattern is going, and court coverage.
Coaches and players can see what’s trending, the successes on the court,
and the failures…all live while the match is taking place to help shape the
outcome.

—Donato, 2016

For software delivery, there is no measure of true progress other than code
running in production. This does not mean the full software application
being delivered but rather small pieces of capability that build up toward the

DevOps Adoption Playbook96

final product. This continuous delivery of software provides the opportunity
to get feedback, from actual customers, or in some cases customer surrogates
using the software and providing feedback. This feedback can then be used
to improve three things (as I discuss in Chapter 2):

 1. The software delivered
 2. The environment to which the software was delivered
 3. The process by which the software was delivered

As shown in Figure 4-1, Continuous Delivery results in continuous feed-
back. Continuous feedback results in continuous improvement. The focus then
becomes on making the feedback cycle as short as possible, to get the feedback
data and analytics back to the practitioners in the shortest time span, so they
can rapidly improve the software, environments, and delivery processes.

Figure 4-1: reduced cycle time drives faster feedback.

1. Get ideas into production fast
2. Get people to use it
3. Get feedback

CustomerPeople

1

2

3

Line-of-
business

The time it takes for each software component—whether a new compo-
nent, a new enhanced version of an existing component, or a bug-fix to a set
of components—to go from inception to code running in production and for
the feedback from users to come back to the teams is defined as the delivery
cycle time (also referred to as Lead time). This delivery cycle time has embed-
ded within it various other cycle times.

 ■ Dev-test cycle time is the time it takes developers to get test results back
from the test team for a newly delivered component.

 ■ Deployment cycle time is the time it takes to deploy an application to an
environment and start utilizing it for testing or production.

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 97

 ■ Ops cycle time is the time it takes for Ops to get a request for a new
environment, to provision the environment, and to make it available
to the requesting team.

 ■ Datacenter latency cycle time is the time it takes to get a ping response
from a remote datacenter.

 ■ Project approval cycle time is the time it takes for the various approval
boards and committees to approve a new project.

 ■ Change management cycle time is the time it takes for the Change Control
Board to approve a change.

 ■ Financial approval cycle time is the time it takes the CFO to approve
financial requests.

 ■ Acquisition cycle time is the time it takes for the purchasing office to
approve acquisition requests.

 ■ Management approval cycle time is the time it takes for management to
approve anything.

The goal is to reduce the delivery cycle time. This can be achieved only by
reducing each embedded cycle time—the ones listed here and many more that
make up the overall delivery pipeline.

Reducing cycle times is a core goal of DevOps. It is a Lean principle to make
any interaction between stakeholders more efficient and shorter. You will see
that reducing cycle time is an underlying theme across almost every DevOps
play described in this book.

 ■ How fast can you deliver an artifact?
 ■ How quickly can a practitioner respond to a new request?
 ■ How quickly can assigned tasks be completed?
 ■ How quickly can applications be deployed?
 ■ How quickly can a new practitioner be on-boarded to a project?
 ■ How quickly can environments be provisioned and configured?
 ■ How quickly can security changes be approved?
 ■ How quickly can defects be replicated in a Dev environment?
 ■ How quickly can test data be made available from production data?
 ■ How quickly can requests be approved or disapproved?
 ■ How quickly can reviews be done?
 ■ How quickly can status reports be done?
 ■ How quickly can applications be rolled back?
 ■ How quickly can incidents be re-created?

DevOps Adoption Playbook98

 ■ How quickly can outages be resolved?
 ■ How quickly can customer feedback be incorporated into new require-

ments or enhancement requests?

Reducing cycle time requires all of the DevOps principles to work, mak-
ing processes lean by reducing waste and improving collaboration. One key
to achieving leaner processes and reducing waste, resulting in reduced cycle
time, is reducing batch size, which I will discuss next.

reducing Batch Size

hOw 1% perfOrmanCe imprOvementS leD tO OlympiC gOlD

When Sir Dave Brailsford became head of British Cycling in 2002, the team
had almost no record of success: British cycling had won only a single
gold medal in its 76-year history. That quickly changed under Sir Dave’s
leadership. At the 2008 Beijing Olympics, his squad won seven out of 10
gold medals available in track cycling, and they matched the achievement
at the London Olympics four years later. Sir Dave now leads Britain’s first
ever professional cycling team, which has won three of the last four Tour
de France events.

Sir Dave, a former professional cycler who holds an MBA, applied a
theory of marginal gains to cycling—he gambled that if the team broke
down everything they could think of that goes into competing on a bike
and then improved each element by 1%, they would achieve a significant
aggregated increase in performance.

—Harrell, 2015

Incremental delivery is essential to achieving lean and efficient processes.
Let’s look at an assembly line in a factory (an analogy I have used before). If
you want to achieve speed and quality in the assembly line, you do this by
continuously delivering identical components. The smaller and more similar
each component is, the faster the manufacturing or assembly line can go;
the processes can also be made more efficient because they are comprised of
many small steps that are repeated over and over again. If a practitioner in
the factory or a robotic arm adds the same single rivet over and over again,
the efficiency of its actions can be maximized, as opposed to a scenario where
multiple complex sets of steps need to be carried out. The amount of work done

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 99

by each set of steps represents the batch size. To get maximum throughput and
achieve the smallest cycle time, the batch size needs to be properly managed.

Stepping back for a second and going to the base principles of Lean, adopt-
ing Lean focuses on three areas (Reinertsen, 2009):

 1. Minimizing inventory
 2. Explicitly managing backlogs
 3. Matching batch sizes to team capacity

These principles have been applied for years through Lean process adoption
in traditional factory, logistics, and back-office processes. They are now being
applied to software delivery by Agile and DevOps. Minimizing inventory and
backlog management have been addressed by Agile methodologies. All Agile
methodologies refer to groomed backlog, and mapping work-items (the inven-
tory of software delivery) to sprints. The third area is addressed by DevOps by
managing batch size, which begins with matching of the batch size to team
capacity. In Agile methodologies, this is achieved by knowing the velocity of
a team—the units of work a team can deliver in a single sprint. Based on the
team size, team skills, and past historical delivery results, you can determine
a team’s velocity fairly accurately for a particular type of work item. The set
of work items that a team can fully deliver in a fixed number of sprints will
determine the ideal batch. To maximize the throughput, this batch size needs
to be minimized and matched to the team velocity. Too big or too small and
it reduces team productivity.

Other than team productivity improvement, reducing batch size also has
other benefits:

 ■ Reducing cycle time. The smaller the deliverable, the faster it can be
delivered and the feedback harvested.

 ■ Reducing delivery risk. The smaller the amount of change intro-
duced, the lower its impact, and the lower the risk of introducing
the change.

 ■ Reducing integration risk. If small changes are continuously integrated
with other small changes and then tested, integration issues can be
identified faster, and mitigated faster, as they would be caused by small
changes.

 ■ Reducing architectural complexity. The need to deliver small batches of
change forces the applications to be architected so that they can be

DevOps Adoption Playbook100

developed and delivered in small batches. This results in architectures
that are made up of smaller, highly decoupled components, rather than
large, monolithic components.

 ■ Improving testing and quality. The quality improves as QA teams can run
tests more frequently on smaller sets of changes, rather than having
to run the same set of tests across large, complex sets of changes, less
frequently. This results in issues and defects being identified sooner and
having less impact on a smaller set of changes. This applies to all kinds
of testing: functional, integration, performance, and security testing.

 ■ Reducing over-engineering. The smaller the change delivered and the
faster the feedback is received, the quicker it can be determined whether
the right change has been delivered.

 ■ Reducing waste. It is easier to identify and reduce waste associated with
smaller changes, rather than waste in large, complex changes, which
can also reduce the ability to directly identify sources of waste.

 ■ Reducing visibility complexity. It is easier to get visibility into the real sta-
tus of each team or component in the delivery pipeline. This is because
each set of work items being acted on in a batch is made up of several
smaller tasks that make small changes to artifacts, which, in turn, are
thus easier to track and manage.

 ■ Improving environments. Smaller changes to environments make change
management of the environments easier. It is also easier to identify the
root cause of issues and incidents, as their cause can be narrowed to a
smaller set of changes.

 ■ Improving processes. It is easier to make small, incremental changes
to processes. This reduces the dip in productivity experienced when
new processes are introduced. It also makes identifying the impact of
changes more evident and easier to identify.

 ■ Improving documentation. Documentation of large, complex changes is
difficult to deliver and is typically done after all the changes have been
delivered. By reducing batch size, you are now delivering a smaller set
of changes in each batch, making it much easier to document changes
on an ongoing basis.

 ■ Achieving continuous improvement. Continuous improvement can only
be achieved, by definition, if it involves making small, incremental
improvements. These improvements need to be made to all three areas
of DevOps that are the focus of improvement: the software, environ-
ments, and processes. I will discuss continuous improvement in more
detail later in this chapter.

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 101

Achieving small batch sizes is not a trivial exercise. There are people, pro-
cess, architectural, and tooling challenges that need to be addressed.

 ■ People: The most critical aspect of addressing people, when it comes
to reducing batch size, is dealing with a team’s size and structure.
Traditional team structures are designed for large projects with large
functional teams that work on batches of work constrained within their
functional area and then doing a handoff of the batch to the next func-
tional team. To reduce the batch to its optimal size, you need to form
cross-functional teams that work on a batch through its lifecycle—from
requirement to production. I will discuss various team models later in
this chapter and also in subsequent chapters.

 ■ Process: Processes need to be handled in two ways when it comes to
reducing batch size.

 ■ First, how can the processes be structured to handle small, fre-
quent development, testing, and delivery of components? The
process and the associated governance need to be broken down
into small tasks that practitioners can perform independently
and then hand them off to the next practitioner on the team who
has the right skills for the next task.

 ■ Second, how can the processes themselves be continuously
improved, incrementally? It is easier to make small improve-
ments to processes, rather than large, radical changes. As I have
already discussed, introducing change results in a drop in pro-
ductivity (the dip). Introducing small changes results in smaller
drops in productivity.

 ■ Architecture: The architecture of an application has to be such that it can
be broken down into small components that can be developed, tested,
and deployed independently. Refactoring existing applications to such
an architecture is not a trivial exercise. I discuss this in detail in the
next chapter in the section on microservices. Architectures that are not
based on microservices can also be worked on in small batches, but in
that case you are adding incremental change to a large code base, which
needs to be delivered in its entirety. Team structure and architecture
are closely related to each other. I will discuss Conway’s law (Conway,
1967), which captures this relationship, later in this chapter.

 ■ Tools: Putting together the delivery pipeline tool-chain to handle rapid
delivery of small batches requires that the tools be tightly integrated,
with minimal nonautomated steps in the delivery processes. This is the

DevOps Adoption Playbook102

only way to attain the lean and efficient throughput needed. The role
of the tools is to automate processes. The processes, in turn, can be
made more efficient by leveraging the capabilities in the tools that are
not available if performing tasks manually. Tools are best leveraged to
automated, repetitive tasks, and to codify the processes.

Finally, there is the whole issue of releasing to customers. While the deliv-
ery teams might start delivering in smaller batches, resulting in continuous
delivery, this mind-set shift to release smaller, more frequent new versions
may not extend all the way to the end-users. The end-users may not be ready
to consume changes or updates in frequent, smaller batches. Where it is not
possible to release new versions that frequently to users, you need to release
the small batches to a pre-production area. The deliverable in pre-production
can be tested and made customer-ready and then released to the customer at
formal, user-accepted, and less-frequent release dates. I will discuss release
management processes in depth later in this chapter in the section “Play on
Release Management.”

establishing the right Culture

team ChemiStry

Chemistry. To me, the most important aspect of the game. Teams with great
chemistry win championships. Great teams with poor chemistry lose cham-
pionships. This is why the Cavaliers have the best chance to win this year.

The Lakers are everyone’s favorite. However, they have looked bad at
times, due to their arrogance and lack of chemistry. The Cavaliers cannot
run with the Lakers talent wise, but their chemistry will push them over
the top.

—Roberts, 2009

Conway’s law: Teams and architecture
When Melvin Conway first submitted his paper where he proposed his law,
to Harvard Business Review (HBR) in 1967, they rejected it on the basis of
lack of proof to make what he proposed a law. However, Fred Brooks and
several other experts gave it the backing it needed to get the attention it
has garnered. Whether it is a law or not depends on your definition of the

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 103

weight of mathematical proof required to deem something a law. That level
of mathematical proof does not exist for Conway’s law. However, there is suf-
ficient evidence in the software world to heuristically observe the nature of
the architecture of software and map it to the structure of teams delivering
the software to conclude that Conway’s law exists.

Conway’s Law: Any organization that designs a system (defined broadly) will produce
a design whose structure is a copy of the organization’s communication structure.
(Conway, 1967)

From a DevOps teaming and organization perspective, Conway’s law is
regularly referenced as the basis on which to re-organize teams to make pro-
cesses, and application and system architectures, more efficient. If you can
make their communication and collaboration structures effective by making
them lean and efficient and by removing obstacles and silos, then as per
Conway’s law, this change will be reflected in the design and architecture of
the applications and systems being delivered by the teams. Conversely—and
to most, counterintuitively—if you enforce certain architectural models that
are inherently designed for delivering change in small batches and the teams
are allowed to self-organize around the needs of delivering applications and
systems with such architectures, then as per Conway’s law, the resulting
team models should be the right organizational models to enable the high-
est levels of communication and collaboration. The two emerging areas
of the interlocking of team models designed for maximum collaboration
and communication and the architectural models such teams can deliver
to achieve maximum throughput are squads for team models and 12-factor
apps for architectural models. I discuss both of these areas in depth in the
next chapter.

Devops as a Cultural Movement
DevOps is first a cultural transformation. It began as a cultural movement and
remains so at its heart. All the improved processes, automation with tools, and
cloud-enabled environments that can be provisioned in minutes are not going
to achieve the goals and the promise of DevOps if the people who are engaged
do not transform how they are organized, how they communicate, and how
they collaborate—not until they break down the organizational and cultural
silos that hinder maximum efficiency and throughput and reduce trust. And
not until they overcome the organizational cultural inertia.

DevOps Adoption Playbook104

Overcoming cultural inertia requires buy-in and a willingness to change at
all levels of the organization, not just at the practitioner level.

 ■ Organizational: At the organizational level, there needs to be buy-in
and sponsorship from senior executives and management to change the
organization. This can include setting up DevOps Centers of Excellence,
funding DevOps enablement, creating a team of DevOps coaches, invest-
ing in tools, platforms, and environments for the delivery pipeline,
sponsoring the transformation of legacy processes and governance, and
even reorganizing the reporting structures of teams in order to facilitate
the minimizing of organizational silos. I discuss how senior executives
can be the lead change agents to allow for DevOps to be adopted at scale
across large organizations in more detail in later chapters.

 ■ Teams: For an application of any decent size and complexity, every-
thing—from project plans, to requirements, to architecture and design,
to Dev and test, to Ops, to security, to incident management—is done
by teams. The teams have traditionally been organized into functional
silos. One of the core tenets of DevOps has been to act to break down
these silos; to foster a culture of trust, communication, and collabora-
tion between all the team members, across functional areas; to have all
practitioners contributing to a project or application development and
delivery effort become stakeholders in the success of the application.
They need to become stakeholders with shared ownership and respon-
sibility in ensuring the application delivers the business value it was
designed to deliver and not just be responsible for the completion and
success of their own respective functional area or silo.

Several team models have been proposed to accomplish this from a
team organization perspective. From NoOps, made popular at Netflix
(Cockcroft, 2012), to fully self-contained cross-functional teams called
squads, made popular by Spotify (Kniberg, 2014), all these models
are designed to break down the silos and allow teams to function as
one unit. These teams are structured to include stakeholders who are
responsible for each area of the application and to have fluid bound-
aries of functional ownership and responsibility with other teams. I
discuss various team models and their strengths and weaknesses in
Chapter 6. It is important to understand that, irrespective of how the
teams are organized, by completely reorganizing your practitioners
into cross-functional teams or creating cross-functional matrixed

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 105

teams, where they retain traditional reporting structures, the goal is
to remove organizational obstacles that prevent team members from
collaborating and communicating and working together at maximum
efficiency.

 ■ Individual: Individuals can be the eventual enablers or the ultimate
bottlenecks. Only individuals with the right intentions and more impor-
tantly with the willingness to change can make the necessary changes
to cause a transformation. Ultimately, even if the teams are well orga-
nized to enable trust, collaboration, and communication, if one or more
individuals choose not to participate and not to overcome the cultural
inertia, then change will not happen.

What a coincidence! While you were off we discovered the source of the bottleneck.

—Irate boss to employee

People behave based on how they are measured (and compensated).
It is thus critical to accompany any organizational change with a match-
ing change to how individuals on the teams are measured, evaluated,
and rewarded. To truly create a culture of shared ownership and respon-
sibility, you need to have common measures of success for all the indi-
vidual stakeholders. You cannot have an overt focus on measuring and
rewarding individual performance and expect individuals to perform
with the team’s interest before theirs. In team sports, the trophy or gold
medal goes to the whole team, not to the individual who delivered the
most goals or points. Yes, there may be MVP (most valuable player)
or Man of the Match awards, but those do not ever supersede the main
team prize.

There are no MVPs in the Olympics and no individual contribution
medals for team sports. Every player on the team gets the same medal.
Brazilian soccer star and captain Neymar’s gold medal for scoring
the winning goal in the 2016 Olympic soccer final is the same as the
gold medal of everyone else on the team. It is the same as even that
of the substitute players on the team. In the Olympics, in true team
spirit, the substitutes also get the medal a team won, as long as they
got to come to the field and play at least once in any of the matches
in the entire Olympics, even if it was just a qualifying game and not
the medal game.

DevOps Adoption Playbook106

No matter how you arrange the entire organization, the various teams, or
even how individuals behave and act, it is a combination of people (teams),
processes, and automation that enables the true potential of DevOps to be
achieved. Well-organized and highly collaborative teams that are following
inefficient processes, are overburdened by rigid governance, don’t have the
right tools to enable and scale automation, or have legacy environments to
deliver the application to will fail. True transformation—and that is what a
DevOps adoption is, a transformation—requires transformation of all three:
people, processes, and tools. None comes first. They cannot be adopted serially,
and none can be ignored. Teams are the focal point of the transformation, of
course—they are the ones who do the work and enable the transformation.
Processes guide teams on how to do the work. Tools allow the processes to
be repeatable, scalable, and error free.

the DevOps plays
Let’s begin with the plays. It is important to note that while these plays are
presented in a sequential manner, they do not need to be adopted in this order.
Most can be adopted in parallel. Some are dependent on others; these depen-
dencies are self-evident, but where necessary, I’ll point them out.

play: establishing metrics and Kpis

A particular shot or way of moving the ball can be a player’s personal signature, but
efficiency of performance is what wins the game for the team.

—Pat Riley, former NBA player, coach, and team executive

As I discuss in Chapter 3, in order to identify the right DevOps plays that
are needed, you need to do the following:

 ■ Define the target state (business goals and drivers)
 ■ Understand the current state (capability maturity)
 ■ Identify the bottlenecks of areas of inefficiency in the delivery pipeline

(by conducting a value stream mapping exercise)

Together, these three requirements represent the optimization goals you
need to achieve and the constraints these goals need to be achieved in.

Like any optimization exercise, you need to measure current productivity
and then set a goal of target productivity. The definition of productivity and

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 107

how much improvement you need to target will vary from organization to orga-
nization, and with the constraints they have. You therefore need to start with
identifying the metrics that matter. What Key Performance Indicators (KPIs)
of the business will need to be impacted? These are the KPIs that matter—the
KPIs that optimizing the delivery pipeline needs to improve.

Because these KPIs will determine and measure what you improve and how
you are improving, this play should be executed first. It is a prerequisite to
other plays. As in any sport, you first need to know how you win that game.

Let’s look at some examples of KPIs that most organizations typically mea-
sure when adopting DevOps.

Project KPIs

Never mistake activity for achievement.

—John Wooden, college basketball player and coach

There are two core project KPI areas:

 ■ Speed
 ■ Cost

Yes, speed and cost are probably the lowest common denominators of the
KPIs every organization measures and optimizes. Speed can be measured in
many ways. Here are some examples of speed-related KPIs:

 ■ Total project duration
 ■ Man hours (or months/years)
 ■ Time to market/time to value
 ■ Mean time to resolution (for fixes)
 ■ Number of experiments run (for innovation edge projects—more in

Chapter 5)
 ■ Delivery velocity (number of features or user stories delivered per

release)

Cost is simpler, but it can still be measured in several ways, depending
on the project management and estimation practices used. Here are some
examples:

 ■ Total project cost
 ■ Earned value

DevOps Adoption Playbook108

 ■ Cost performance index
 ■ Cost variance
 ■ Cost ratio
 ■ Cost per deploy (initial deploy versus re-deploy)
 ■ Cost per issue fixed/outage
 ■ Cost of customer acquisition versus total lifetime customer value

What typical KPI improvements do organizations that have adopted DevOps
see for speed and cost? For a large communications organization that adopted
DevOps, working with IBM, they saw the following (Kagan, 2015):

 ■ Maintenance, small projects (fewer than 15 person-year)
 ■ 30–40% faster delivery of compete projects
 ■ 20–25% overall cost reduction

 ■ Maintenance, Medium projects (fewer than 100 person-year)
 ■ 20–30% faster delivery of compete projects
 ■ 15–20% overall cost reduction

 ■ Maintenance, Large projects (more than 100 person-year)
 ■ 10–15% faster delivery of compete projects
 ■ 4–8% overall cost reduction

Portfolio KPIs
Given the interdependence of projects with other projects and the ever-changing
mix of the types of projects, most organizations should also measure KPIs
related to these areas across their application portfolio. Some examples of
application portfolio management KPIs include the following:

 ■ Mix of projects in the portfolio, by application type (mainframe apps,
distributed apps, mobile apps, cloud-native apps, packaged apps, SaaS
applications, and so on)

 ■ Mix of applications by system of record versus system of engagement
 ■ Mix of applications by architecture types (monolithic, service-oriented

architecture [SOA], microservices, serverless, and so on)
 ■ Number of interdependencies between components and/or applications

that are architected using APIs versus those using direct integrations
 ■ Reuse of code and/or architectural components across portfolio
 ■ Distribution of applications by cost, risk, and business value
 ■ Mix of applications that are in maintenance mode, slated for retirement,

versus new development

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 109

Quality KPIs
When measuring quality, and thus optimizing to improve quality, choosing
the right measure of quality is essential. Here again, the right KPI will vary
from project to project and also from industry to industry. An organization
building a medical device will have a much higher set of quality goals than an
organization building a photo sharing app, even one with cool filters.

There are two functional areas where quality KPIs are measured: Quality
Assurance (QA), which is a part of application development process; and opera-
tions, which measures quality in production.

For Quality Assurance KPIs, the typical DevOps-related questions that
need to be asked are as follows:

 ■ What percentage of tests (unit, functional, integration, performance,
and security tests) are automated?

 ■ What percentage of services and applications can be automatically “vir-
tualized,” or stubbed out, for testing?

 ■ What percentage of testing is done on production-like environments,
using production-like data?

 ■ What percentage of QA practitioner time is spent in test environment
provisioning, configuration, and application deployment (nontesting-
related tasks)?

 ■ What percentage of developer time is spent re-creating defects found
by QA?

Typical Quality Assurance KPIs involve measuring effort and duration in
multiple areas. Here are some examples:

 ■ Testing preparation discussion
 ■ Test data preparation
 ■ Test environment checks (smoke tests)
 ■ Test readiness review
 ■ Test case selection
 ■ Test case execution
 ■ Test result analysis
 ■ Defect creation
 ■ Defect re-testing
 ■ Test summary report preparation
 ■ Test summary report communication

DevOps Adoption Playbook110

After adopting DevOps, it is not uncommon to see a 40 to 50 percent reduc-
tion in both duration and effort for most of these areas (Kagan, 2015).

The core metrics that the business would be focused on, typically measured
by operations teams, are as follows:

 ■ Number of Severity (Sev) 1 and Sev 2 incidents
 ■ Average resolution time of Sev 1 and Sev 2 incidents
 ■ Average cost of Sev 1 and Sev 2 incidents

DevOps focuses on reducing these Sev 1 and Sev 2 incidents and reduc-
ing the average resolution time when they do happen, eventually resulting in
reduction of the cost of such incidents (Quirk, 2004). DevOps does so through
continuous monitoring to observe the types and causes of errors and issues in
production. Examples of such KPIs include the following:

 ■ Software failure
 ■ Application failure
 ■ Data error
 ■ Data transmission error
 ■ Infrastructure induced issues
 ■ Services alert state/stopped
 ■ High space utilization
 ■ Configuration error

Improvements for IBM clients in the area of quality in operations, upon
adopting quality, have included the following (Kagan, 2015):

 ■ 50% reduction in outages and application performance slowdowns
 ■ 60–90% improvement in availability
 ■ 90% faster diagnosis of root causes of application problems

Delivery Pipeline optimization KPIs

MuDa

Muda is a Japanese term for wastefulness of valuable resources. According
to Taiichi Ohno, father of the Toyota Production System, these are Seven
Wastes or sources of Muda:

 ■ Transportation
 ■ Inventory

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 111

 ■ Motion
 ■ Waiting
 ■ Overproduction
 ■ Over-processing
 ■ Defects

—Pereira, 2009

The ultimate goal of DevOps is to reduce waste to optimize the entire deliv-
ery pipeline—from ideation (idea stage) to production. To achieve this, you
need to have KPIs that measure how complex the application delivery process
is and work on simplifying it. Following are some good examples of KPIs to
measure delivery pipeline complexity. These KPIs should be measured both
for initial deploy and re-deploys of the application:

 ■ Cost per delivery cycle
 ■ Duration of the delivery cycle (lead time)
 ■ Number of approval steps in the delivery cycle
 ■ Number of management or governance reviews (gates) in the delivery

cycle
 ■ Number of nonproject team stakeholders who have to approve at dif-

ferent review steps (security, legal, and compliance; enterprise archi-
tecture; change control boards; standards boards, and so on)

Here are some other examples of KPIs that can be measured at a project
level to determine process improvement, at that level:

 ■ Project initiation time
 ■ Groomed backlog (for Agile projects)
 ■ Overall time to development
 ■ Composite build time
 ■ Sprint test time
 ■ Build Verification Test (BVT) availability
 ■ Total deployment time
 ■ Overall time to production
 ■ Time between releases
 ■ Percentage of practitioner time spent on new development versus

maintenance

DevOps Adoption Playbook112

Culture KPIs

One man can be a crucial ingredient on a team, but one man cannot make a team.

—Kareem Abdul-Jabbar, former NBA player

It has been suggested that anyone who finds the right KPIs to measure
culture deserves the Nobel Prize, for both Economics and Peace (for stopping
all the metrics of culture wars). How do you measure cultural inertia? How do
you measure whether culture is improving? One common way is to measure
morale. Is it improving? But tracing a direct line from cultural change to an
uplift in morale is difficult to achieve. You can actually be in an organization
that has great organizational culture and still ultimately have low morale. Think
of a cool startup with open floor plans, beer (and) pong, massages during
lunch, and ludicrous stock options. However, if the company has technology
that fails to get the promised results, no amount of culture can save it; morale
goes down along with the stock option prices.

Looking at first principles of DevOps—developing a culture of trust, col-
laboration, and communication—you can measure if these are improving. If
pre-DevOps cross-silo communication was only through tickets or practitio-
ners spent more than an average of one hour each day in status meetings, or
spent any time updating status reports, and today they don’t, then you have
achieved improvement of culture. To measure culture, any metrics you choose
should measure how much teaming and communication within teams and
across teams are occurring.

Here are some examples of KPIs that can be measured, which indirectly
indicate the maturity of the culture:

 ■ Percentage of artifacts that could be consumed by the practitioners
receiving them without need to modification or rework (%Complete
and Accurate)

 ■ Percentage of practitioner time spent in meetings versus doing produc-
tive work

 ■ Percentage of practitioner wait-time, waiting for someone to respond to
a request, with no visibility into their status

 ■ Percentage of communication between practitioners that is not real-time
(think e-mail versus messaging)

 ■ Number of artifacts created and updated by practitioners that add no
value to the final deliverable

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 113

 ■ Number of people from other functional areas that practitioners interact
with on a weekly basis, outside status meetings

 ■ Level of decisions that a team can make on their own, without involv-
ing management (team empowerment)

 ■ Percentage of reporting done via meetings or status reports versus
dashboards

 ■ Visibility of project metrics and KPIs across practitioners via dashboards
 ■ How well team members feel their individual contribution is aligned

with the broader business and organizational goals
 ■ Practitioner turnover
 ■ Practitioner contribution to company intellectual property (IP) and/or

open source projects (giveback)

Some key points here that are very interesting are team empowerment and
contribution to IP or open source projects. Both of these measures are critical
in today’s world, especially with teams that have Millennials. Both of these
metrics are good measures of how much self-worth and confidence practitioners
feel and are able to build upon.

If you look at culture purely as being how people behave and interact, then
making sure you have the right people on the team is eventually the most
important measure and cause of right culture. Are the people on the team
productive team members? Are they happy? Do they go above and beyond
the call of duty, so to speak, to make the team successful? Do they have a
positive impact on the team morale and culture, or are they the cause of cul-
tural inertia? Probably the most extreme example of steps companies take to
ensure they have the right people on their teams comes from Amazon and its
subsidiary Zappos. These companies actually pay people who are unhappy to
leave. Amazon makes an offer, once a year, to its fulfillment-center employees,
paying them anywhere from $2,000 to $5,000 to leave if they are not happy.
Zappos does the same after its aggressive, deep-dive training program for new
employees. They would rather pay people to quit than keep them on the team,
hurting it and the company culture (Taylor, 2014).

play: agile adoption

Before the start of a game I thought it was a good idea to motivate the team with
phrases like: “we really need to win, otherwise we’re out.” The effect was rather the
contrary, it did not help them to perform better. Initially I was wondering why. Now

DevOps Adoption Playbook114

I know. The problem is that the individual player has no chance to influence the
outcome of the game by himself. Even though she does [her] very best there are too
many other factors she cannot control and which can be decisive for the outcome.
This lack of control made them tensed and nervous hindering them to function
optimally. I realized that winning or losing is merely the result of the way we play.
The good news is that each individual player CAN influence the way she plays. So
instead of talking about winning or losing before a game we carefully repeat our
strategy before a game as well as the personal things each player has to pay attention
to. That’s concrete and much better controllable. Through this approach they are
much more relaxed and in a condition to bring the very best out of them. Our results
proved that.

—Marc Lammers, field hockey player and head coach, Netherlands (Peter, 2008)

Most organizations begin DevOps adoption with projects that have already
adopted Agile. It is in essence a prerequisite to DevOps adoption. Some have
even argued that DevOps extends adoption of Agile left towards the proj-
ect management, project initiation, and design phase of a project, and right
towards operations.

One question that goes hand-in-hand with this assertion that DevOps
begins with Agile is whether DevOps can be adopted by teams practicing
waterfall development processes. Of course, you cannot have practices like
continuous integration and continuous delivery in a waterfall approach, as there
is nothing continuous about it. If one delivers just once, then by definition one
cannot be continuous. While this is true, that you cannot adopt all DevOps
practices and can certainly not get all the benefits of DevOps when using a
waterfall application delivery process, you can, however, benefit from several
individual DevOps practices that can make even a waterfall-based delivery
pipeline more efficient. Such practices include the following:

 ■ Deployment automation. Manual deployments are a waste of time and
effort and are error prone. Even if you are not continuously deploying,
automating deployments adds tremendous value in time saved and
improved quality of deployments.

 ■ Access to production-like environments. Having developers and testers
work with Dev-test environments that are not like the production envi-
ronments lowers quality and creates re-work. It can be easily addressed
by providing access to production-like environments through all states
of application delivery.

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 115

 ■ Test automation. Here again, automation drives speed and reduces errors.
 ■ Monitoring and feedback. Providing access to production performance

metrics to the lines of business and developers adds value to their ability
to improve the application and production environments.

These and several other practices included in the DevOps framework, and
discussed in this book, are agnostic to whether the application delivery pro-
cesses are Agile or waterfall and can be adopted by any project.

Other than the fact that from a process perspective Agile projects are the
most suitable for DevOps adoption, such projects become the breeding ground
for grassroots DevOps adoption because of the limitations of Agile. The key
limitation of Agile is that its scope is limited to Dev-test. Yes, Agile includes
the business in the Dev-test cycle, but the role of business is limited to engag-
ing with Dev-test at every sprint to ensure that they are developing the right
things. Agile approaches like Scrum and Scaled Agile Framework (SAFe) do
not extend to transforming how the lines of business operate to make them
more agile, nor do they extend to Ops to make it more agile. With the rest
of the delivery pipeline operating in a waterfall-like manner, with defined,
fixed-date gates, or Ops engaging with Dev-test through a manual ticket-based
system, this approach results in what I refer to in Chapter 2 as water-Scrum-fall.

Agile teams hit the limit of their productivity pretty soon in such a water-Scrum-
fall environment. As they speed up, if the inputs are coming in to them from
stakeholders who don’t match the speed or if the stakeholders who consume their
outputs are unable to match their speed, then the impedance mismatch limits their
speed and agility, as shown in Figure 4-2. This becomes a compelling reason for
them to adopt DevOps to take their speed and agility across the delivery pipeline,
eliminating the mismatch.

1 per min 1 per min

4 per min 1 per min

4 per min 4 per min

Figure 4-2: addressing the impedance mismatch caused by “water-Scrum-fall”

DevOps Adoption Playbook116

It is not uncommon to see the efforts to eliminate the impedance mismatch
result in the removal of a series of obstacles, or as I call them earlier in the
book, bottlenecks. Here are some examples:

 ■ If developers are practicing continuous integration, ending each day with
a build ready to test, and if the test organization is unable to test at that
rate, then it needs to be addressed.

 ■ If Dev-test is running two-week sprints but the Ops team takes three
weeks to provision a new test server, it needs to be addressed.

 ■ If Dev-test teams are able to operate continuously, delivering code with
a high velocity through two-week sprints, but the business analysts
are providing new user stories in large blocks once a quarter, which is
slower than the delivery velocity, it needs to be addressed.

 ■ If the security team is only able to run their security tests on new apps,
only once per release cycle, and take 5 to 10 days to run their tests, it
needs to be addressed.

 ■ If integration builds are taking hours to complete because they build
every component and module, even those that did not change, it needs
to be addressed.

 ■ If the lines of business expect projects to operate on project plans with
fixed, gate-based schedules but in reality their requirements are not
well understood, the project plans need to be addressed.

Such bottlenecks can be pre-emptively identified and a mitigation plan
made to address them through the value stream mapping exercise mentioned
in Chapter 2.

As Agile teams hit these walls, this makes a case for DevOps adoption to
maximize the full potential of what these teams can achieve and maximize
the full potential of Agile itself. They need to do so by introducing DevOps
practices to extend the “agility” left and right in the delivery lifecycle. DevOps
extends the agility left by bringing DevOps practices to the stakeholders in
the front end of the lifecycle, leveraging techniques and practices like Agile
product management, design thinking, and Lean startup (all discussed more
in the next chapter). Extending this agility to the right goes to the soul of
DevOps. That is where DevOps started (and got its name), by bringing Dev
and Ops closer. Doing so leads to adopting practices like continuous delivery,
Infrastructure as Code, software-defined environments, and continuous feedback.
I will discuss all of these practices and techniques in the coming plays. You

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 117

will see how they drive agility and efficiency in the entire delivery pipeline,
from ideation to production.

So, from a DevOps plays perspective, there are two ways the Agile adoption
play can be adopted:

 1. Agile teams: If you have teams or projects that have already adopted
Agile, find the teams that have matured enough to start hitting the limit
of their productivity due to the constraints water-Scrum-fall puts on
them. These teams are ripe for progressing up to DevOps adoption, as
shown in Figure 4-3.

 2. Non-agile teams: As discussed earlier in this chapter, these teams can
certainly benefit from adopting certain DevOps practices, even if they
are not going to change to an Agile development methodology.

Figure 4-3: achieving agility across the delivery pipeline

Water-Scrum-fall

Plan Develop Build Test

Agile

Extending agility across
the delivery pipeline

with DevOps

Deploy Production

play: integrated Delivery pipeline
In order to maximize the efficiency across the entire delivery pipeline, you
need to eliminate or minimize the bottlenecks and inefficiencies across the
pipeline, impacting every stakeholder. Most of the bottlenecks happen at the
touchpoints between stakeholders—where they interact with each other—
across their functional areas and where they hand off artifacts from one to
another. Manual tasks are the number-one reason for these inefficiencies.
Tools are necessary to automate processes, reducing wait-times and manual
errors. That being said, tools can add to the complexity and inefficiencies if
the tools are not integrated. Pre-DevOps, the focus was to optimize individual

DevOps Adoption Playbook118

functional areas in the delivery pipeline. Individual functional teams sourced
best-of-breed tools for their functional areas. However, tools, like stakeholders,
do not operate in a vacuum. Artifacts are either created in the tool or need to
be input from tools used by another stakeholder team. Artifacts that are cre-
ated or modified need to be handed off to another stakeholder team, with their
own chosen toolset. If these tools are not integrated, creating a seamless tool-
chain, they can create significant inefficiencies at these handoff touchpoints.

It is not uncommon to see a practitioner get an artifact from another stake-
holder team in a format that her tool cannot consume. She may get a file that
then needs a manual import into the tool she and her team use—for example,
getting a data model from a data analyst team, which needs to be converted
to XML or CVS (comma-separated values) before it can be imported into
an application architecture tool. Or developers may be creating code using
a Jetty or Tomcat servlet container, which then needs to be deployed to a
WebSphere Application Server. All these situations require additional steps,
whether manual or automated, causing inefficiencies.

The real solution is an integrated tool-chain, one where there is a single
source of truth—a single repository for each artifact type that any stakeholder
with the right permissions can access. It is a tool-chain where artifacts can
be passed seamlessly from one tool to another, either through well-developed
point-to-point tool integrations or, even better, using a standardized format
for the artifacts. A lot of work has also been done to build data-level linkage
between tool data stores themselves, providing data store-level integrations,
and thus eliminating the need for moving artifacts from one tool to the next.
The Open Services for Lifecycle Collaboration (OSLC) open-standards com-
munity effort is dedicated to address standards for this data-level linkage.

Figure 4-4 shows an example of a delivery pipeline. In reality, the delivery
pipeline will be much broader, including additional stakeholders and the tools
they use, such as requirements management, architecture, application design,
project management, security, release managers, and so on. The actual stake-
holders will, of course, vary by organization and even by project. The environ-
ments shown will also vary. There may be multiple test and QA environments
for functional, integration, performance, stress, system integration testing
(SIT), user acceptance testing (UAT), and security testing, to name a few.
There may be multiple staging environments. Some organizations also have
both pre-production and post-production environments. There will also be
monitoring and administration tools for all these environments. The number
of tools and environments needs to be within reason, but more importantly,
the tools should be in an integrated tool-chain, as discussed earlier.

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 119

Figure 4-4: integrated delivery pipeline

Development SCM Build Package
Repo

Deploy Test Stage Prod

achieving end-to-end Traceability
One of the core benefits of having an integrated delivery pipeline is end-to-
end traceability, across artifacts, across the delivery pipeline. This end-to-end
traceability enables the existence of a single source of truth for all practitio-
ners and stakeholders, across functional areas. The most significant benefit
of end-to-end traceability is that it gives the practitioners and stakeholders
the ability to have visibility into the relationships between the artifacts and
access to the right version of the right artifact that they need for the task they
are working on.

Take a look at Figure 4-5, which shows an example of end-to-end traceability
for a defect related to a change request. Let’s take a typical situation: a developer
has worked to make code changes to satisfy a new change request. She delivers
the change set to the integration stream and a CI build is created. The CI build
is delivered to the testers. They run a test suite and one of the test scripts fails.
A defect is opened to capture the failure. In the absence of end-to-end trace-
ability, it is not uncommon for multiple developers and testers working on
resolving such a defect to have to go back and forth multiple times to identify
which change set which test was run on and to properly isolate the root cause
of the defect in the code. It is even more cumbersome to do proper impact
analysis and estimate the effort required to mitigate such a defect. With end-
to-end traceability, all the artifacts can be traced to one another, making defect
identification, impact analysis, and the actual resolution much more efficient.

Let’s walk through the traceability diagram. (Note: this diagram represents
just a subset of a full end-to-end traceability model.)

 ■ The defect is found by running a test script.
 ■ The test script is a part of a test suite.
 ■ The test suite represents a test plan.
 ■ The test plan is created to validate a set of requirements.
 ■ The failed test script has an associated test execution record.
 ■ The failed test script has a test result.
 ■ The test result is used to create the defect.

DevOps Adoption Playbook120

 ■ The defect can be traced to a code change set, which was the last set of
code changes in the CI build.

 ■ The change set is made to satisfy a change request.
 ■ The change request impacts a set of requirements.

Figure 4-5: end-to-end traceability of a defect

Requirement
Change Request

(Work Item)

Change Request
(Work Item)

Requirement

Defect
(Work Item)

Quality Task
(Work Item)

Test Script

Test Suite

Plan Item
(Work Item)

Tracks
Requirement

Implements
Requirement

Tests Plan Item

Validates Req.

Related Test Case

Related Test Plan

Related
Test Plan

Related
Test Case

Validates
Requirement

Related Test Script

Related
Test Script

Related Test Suite

Related
Test Suite

Affects Test Result

Test Result

Test Execution
Record

Blocks Test Execution

Related Execution Record

Related Change Request

Affects
Requirement

Change Sets

Affects Plan Item

Change Set

Test Case

Requirement
Collection

Implements
Requirement

Collection

Validates Requirement Set

Test Plan

Test Plan

Plan

Contributes to Plan

This level of traceability is virtually impossible to achieve without an inte-
grated tool-chain, across the delivery pipeline.

Other than visibility, additional benefits of having end-to-end traceability
include the following:

 ■ Impact analysis. Stakeholders are able to reduce risk by assessing the
impact analysis of changes, open defects, and so on.

 ■ Change management. Traceability allows for proper change management
of artifacts, by allowing all changes across all artifacts to be traced, by
change set and by work item.

 ■ Reduce overproduction. Traceability allows for the identification of dead
code, code that does not trace to active requirements, test cases that do
not trace to requirements, and so on.

 ■ Practitioner efficiency. Practitioners can ensure that they are working on
the right artifacts and can trace their work upstream and downstream,
without manual tasks.

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 121

 ■ Test coverage. This ensures that all requirements are tested and all tests
are testing active requirements.

 ■ Status reporting. End-to-end traceability allows for status reporting to
become automated. No more spreadsheets are required to correlate
status reports across functional teams.

 ■ Compliance and auditability. End-to-end traceability allows for the cre-
ation of audit trails—who, what, why, and when of each and every change,
across artifacts, across stakeholders, and across the delivery pipeline.

End-to-end traceability is not easy to achieve. As you build an integrated
delivery pipeline, you should strive to ensure that proper traceability is main-
tained across the artifacts that were not traceable before the new integrations
were added.

Multi-Speed IT with Multiple Delivery Pipelines
There has been a lot of discussion and back and forth in the industry about
the term Multi-Speed IT. The classification of the application in an organization
originated as two-speed IT in papers by Gartner, the analyst firm. This quickly
gave way to bimodal IT, to get away from the notion of having everything
categorized as fast or slow. Bimodal IT was designed to classify applications
based on how stable their requirements were and whether the applications
were evolutionary or experimental in their development. Bimodal also does
not appear to fully satisfy the classification models the industry needed and
is now being replaced by the notion of multi-speed, as it is impossible to have
just two modes in which to categorize all IT efforts and projects. What exists
is really a continuum, especially when it comes to the factor of speed.

Today, the consensus in the industry is that all these models (bimodal,
multi-speed, and any new one that may present itself) are statements in time.
Carmen DeArdo of Nationwide Insurance has long been proposing that the
future will be variable-speed. Each application will choose its speed and mode
based on business intent and goals alone.

Just as lanes in a highway are not designated by speed or whether the driver
is on her daily commute or driving to a new destination for the first time, speed
or mode in application delivery will also not need to be designated. They will
be chosen by the delivery team based on business need and team maturity. A
teenager with a new driver’s license will not (and should not) be driving at the
maximum allowable speed on the freeway. Similarly, an ambulance getting to
an emergency will not need to heed the posted speed limits.

DevOps Adoption Playbook122

The core driver behind multi-speed is the fact that you will never have just
one delivery pipeline (unless you are at a startup, which has just one app). As
shown in Figure 4-6, there will be multiple pipelines. These delivery pipelines
will vary by technology stack, development languages used, environments
delivered to, practitioner maturity, geographic distribution of various practitio-
ners, industrialized core versus innovation edge business intent, risk-value profile
of the application to the business, and, of course, the need for speed by the
business. All these factors, and many more, result in these delivery pipelines
moving at different speeds. This existence of delivery pipelines operating at
multiple speeds is referred to as Multi-Speed IT. These delivery pipelines do
not operate in isolation; they are dependent upon each other, creating chal-
lenges that adopting Multi-Speed IT needs to address. In Chapter 6, I give a
detailed discussion of this interdependence and how handling Multi-Speed IT
is essential to scaling DevOps adoption across an enterprise.

Figure 4-6: multi-Speed it with multiple delivery pipelines

Development SCM Build Package
Repo

Deploy
Application A

Business Capability

Test Stage Prod

Development SCM Build Package
Repo

Deploy
Application B

Test Stage Prod

Development SCM Build Package
Repo

Deploy
Application C

Test Stage Prod

Development SCM Build Package
Repo

Deploy
Application D

Test Stage Prod

From a perspective of building an integrated delivery pipeline, what Multi-
Speed IT implies is that you need multiple such integrated delivery pipelines.
These may all have different tools, best suited for the delivery pipeline’s plat-
form, technology, and delivery speed. What is important is that they are inte-
grated across horizontally. This does not mean that there can be anarchy and
every delivery pipeline can have its own unique combination of tools, even
though they may be integrated. Standardization is essential. Standardization
of tools allows for the standardization of processes and of practitioner enable-
ment, making them fungible across several delivery pipelines that have the
same tool-chain. Standardization also enables the creation of a well-defined
metrics regime allowing for continuous improvement. The goal of this play is
to eventually get to one or, at the most, two integrated delivery pipelines for

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 123

each technology area. COBOL/CICS, Java, .NET, iOS/Android mobile apps,
cognitive apps, big data, blockchain apps—each may have one or two stan-
dardized tool-chains. There cannot be dozens of such delivery pipeline tool-
chains in an organization without it resulting in chaos.

Where there is no standard, there can be no kaizen.1

—Taiichi Ohno, father of the Toyota Production System

In addition to integration needs across a delivery pipeline, vertical integra-
tions need to exist across multiple delivery pipelines. There are five specific
areas where these integrations, and the accompanying standardization of tool-
ing, are imperative.

 1. Planning: Coordination between the planning of work and projects,
across delivery pipelines, with an analysis of the dependencies between
them

 2. Architecture and APIs: Decoupling of the dependencies as much as pos-
sible, by establishing well-architected application touchpoints, imple-
mented using APIs

 3. Deployment automation and orchestration: Ability to provision, orches-
trate, and deploy environments, middleware, and applications, as and
when needed

 4. Virtualization of services and environments for testing: Ability to test any
application or service when the full environments, services, and appli-
cation it is dependent on are not available

 5. Release management: Executing on the release plans—preempting and
addressing any resource contention, delays, and integration challenges

These integrations also enable traceability across multiple delivery pipelines.
I will discuss these integration points across multiple delivery pipelines in
more detail in later plays.

play: Continuous integration
A sprint is the Scrum term for an iteration. Of the many unfortunate names
chosen in IT, this is one. A sprint in track or swimming implies a short, fast
run (swim) that an athlete runs (swims) to finish at their maximum speed

1 Kaizen: A Japanese business philosophy of continuous improvement of working practices,
personal efficiency, and so on.

DevOps Adoption Playbook124

possible—think Usain Bolt or Michael Phelps putting it all on the line to win
a 100-meter race. Furthermore, a sprint in a race has a fixed distance that
runners are trying to run at faster times than their competitors. A sprint in
Scrum, on the other hand, is typically structured to be for a fixed time-period
iteration—like a two or three-week sprint, in which the team works to com-
plete as many units of work as possible, based on their velocity. Velocity is a
term used in Agile methodologies like Scrum to measure how many units of
work a team can typically deliver in one sprint.

In reality, developing and delivering applications is more like a mara-
thon than a sprint. Just like marathon runners, the team needs to develop
a cadence—a regular rhythm at which they are able to complete and deliver
units of work. The teams then continuously work on optimizing this cadence
to maximize their velocity. Just like a marathon runner during training works
to find her optimal runner’s cadence—typically between 160 and 180 steps
per minute in order to be able sustain the complete length of running the
 marathon—members of an application delivery team adopting continuous inte-
gration and continuous delivery need to find their delivery cadence. They don’t
need death marches and heroic efforts to push projects to completion, with team
members burning out along the way. They need to be able to sustain the team
for the entire duration of the project, with a workable, sustainable cadence.

Continuous integration (CI) as a practice is introduced in detail in Chapter 2.
I not only present CI but also go into its core characteristics. Establishing
a continuous integration practice is essential. However, once it is set up, it
is essential for each team to establish a cadence or rhythm for CI. This CI
cadence or rhythm is the regular frequency of builds that the developers will
deliver for testing and eventually for potential release to Ops. This cadence
sets expectations for all teams. A typical CI cadence is a daily build that is
delivered for continuous delivery to start moving toward production. This
does not mean that there should be daily deliveries to production—that is
unreasonable for most enterprises—but they should go at least as far as the
test environment daily.

The CI cadence will be different for each organization. Daily is not the
only option, but there needs to be a steady cadence, even if it is over longer
time periods. Furthermore, there may be a different CI cadence for different
project teams in the organization. The cadence should be determined by the
team itself, based on their comfort level with the processes, tools, and working
together as a team, which in turn will determine their velocity. At a minimum,
a team should do a daily build to enable CI. To enable CI, the build should

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 125

be automated and fast, and the cycle time of feedback from integration tests
should be short. If builds take hours and cycle time from testing takes days,
a CI cadence cannot be sustained. There will be no rhythm.

Enabling CI is every developer’s responsibility. Each developer needs to be
disciplined to deliver their code to the integration stream, in accordance with
the CI cadence the team has adopted. If they do not deliver their code at least
once a day to be included in the daily build (at a minimum), then their code
will not be included in the CI build, breaking CI for the whole team.

Successful daily builds are the heartbeat of a software project. If you do not have
successful daily builds, then you have no heartbeat, and your project is dead!

—Jim McCarthy, Microsoft Visual C++ product manager

Enabling CI requires that teams and projects have good branching schemes
that allow developers to work in isolation, on multiple work items, that create
multiple versions of their code, in parallel, and allow them to easily deliver
code into the integration stream. There are many philosophies on branching
schemes, whether developers should deliver to the mainline or to a dedicated
integration branch (referred to as the integration stream in this book). Teams
need to pick which is most appropriate for their needs of component size per
developer, team size, and team velocity. Any branching scheme or source
code management tool that limits developers’ ability to develop code across
multiple versions in parallel and deliver code to the integration stream from
any branch should be avoided.

CI tools are built to enable a team-wide CI cadence. Modern CI tools like
Jenkins, UrbanCode Build, TeamCity, and Travis CI have the capability to
regularly query the source code management (SCM) system for developers
checking in their code to the integration stream. Once the developer deliv-
ers the code, the tool goes into action and builds the code and integrates it
into the rest of the pre-existing code in the integration stream. Of course,
if the build breaks, the developer whose code was added needs to be noti-
fied immediately—enabling a short feedback cycle time. If the build suc-
ceeds, it needs to be promoted to run appropriate unit and integration tests.
These tests should be automated. The key tests that are critical to run every
time are the integration tests to validate and identify integration errors. If
integration tests pass, key builds such as that at the end of the day (daily
build) should be promoted and deployed to a test environment to run other
tests—functional, security, performance, and so on—and then deployed

DevOps Adoption Playbook126

onward to higher environments. CI tools thus need to be integrated with
deployment automation tools to enable continuous delivery, which I will
discuss in the next play.

As I described in the previous play on integrated delivery pipeline, a typi-
cal organization does not have just one delivery pipeline. There are several
pipelines, and they are interdependent. In the same way, most project teams
do not develop and deliver code in isolation. Multiple teams may be working
on code that comes together to deliver a single component. The components
they are developing, in turn, are interdependent with other components.
Furthermore, several such components come together to deliver a service
or application. Continuous integration thus needs to happen on at least two
levels (see Figure 4-7):

 1. Component-level CI. Where multiple individuals or teams working on
the same component need to deliver their individual code developed to
an integration stream and initiate an integration build, continuously.
Such a build should ideally be done every time a team member delivers
new code to the integration stream or, at the minimum, once a day.

 2. Application-level CI. Where all the components that deliver an applica-
tion are integrated together by an integration build. Such builds are
done less frequently than a component-level build. Still, at least one
daily build should be a bare minimum.

Figure 4-7: Ci across components and applications

Application A
Team 1 Component

team build

Integration
build

Application A
Team 2

Application B
Team 1

Application B
Team 2

Component
team build

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 127

There is also system-level integration, where multiple services or applica-
tions come together for integration. At this scale, it is not continuous integra-
tion, but it is still done as frequently as possible. There is also no real build
because these services and applications are free standing and running inde-
pendently. They do not need to be rebuilt to integrate with other services and
applications. That integration should be at an API level. (I will discuss APIs
more in later plays.)

At all levels, each CI build should be followed by an integration test to iden-
tify integration errors and defects as soon as the build completes. Doing a CI
build and not doing integration testing to validate it and identify any defects
just tells you that you can do a CI build, nothing more about what you have
actually built.

As organizations adopt CI across teams, projects, and applications, the
governance of the build processes starts to become essential to enable scal-
ing across the enterprise. Most CI tools can scale to fairly large projects and
applications, with hundreds of components. However, it is not uncommon to
see build and CI tool sprawl in organizations, with each project implementing
their own instance of the tools. This creates a standardization challenge and
can result in high variance in build quality. Standardization is essential to
getting to enterprise scale. I discuss this in detail in Chapter 6.

Continuous integration is a critical play for DevOps adoption. It drives
several other plays. It is what pushes code into continuous delivery and other
stages in the delivery pipeline (Figure 4-8). The CI cadence sets the pace at
which code flows through the entire delivery pipeline. Doing CI right sets up
DevOps for success.

Figure 4-8: Continuous integration drives the delivery pipeline.

Dev Environment
Continuous Integration

Unit Test
Functional

Test

Performance
Test

Acceptance
Test

Build

Build

Build
Monitoring

Test Environment Stage Environment Prod Environment

Continuous Testing

Continuous Delivery

Continuous Monitoring

DevOps Adoption Playbook128

play: Continuous Delivery

It is a gently progressive program involving four days of running a week. The long
run in the first week of training is a relatively easy 6-miler. Each weekend, the long
run gets longer, peaking at 20 miles three weeks before the marathon. A tapering
period allows runners to gather energy for the race. Stepback weeks allow runners to
avoid overtraining. Cross-training and ample amounts of rest complete the mix.

—Hal Higdon, American writer, runner, and trainer (Higdon, 2011)

Like continuous integration, continuous delivery is also introduced in
Chapter 2. The difference between the often-misused terms continuous deliv-
ery and continuous deployment is also defined. To recap, continuous delivery
is the ability to deploy applications to various environments in the delivery
pipeline, on a continuous basis. This requires that the deployment process be
automated in order to be repeatable, reliable, and scalable.

Deployment automation
As developers develop code, they need to deploy it to a Dev server to make sure
it works. Once they are done writing code, they then deliver it for continuous
integration. The CI build needs to be deployed to a test server for testing and
promoted to other test and QA environments, all the way out to production.
Continuous delivery thus involves multiple deployments to multiple environ-
ments. These may range from simple deployments of a module of code, built
into a deployable binary by a developer, to much more complex deployments
that are essentially complex orchestrations. As code becomes integrated and
built into components, services, and applications, it is not just a simple binary
that needs to be deployed to a server. What you deploy may be anything,
from simple configuration changes to incremental code changes toward a
new feature, to database schema changes, to changes to the environment, to
the whole stack.

Deploying these components to multiple nodes and middleware serv-
ers becomes an orchestration. Deployments of different components may
need to be done in proper sequence. Processes or servers may need to be
stopped and started to take a code module or configuration change. Both
database schema changes and database configurations need to be managed.
Middleware components always come with configuration changes, which
need to be updated and applied across all instances of the clusters of servers.

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 129

Figure 4-9: Deploying application components

Application Model

Application

SIT

WEB

MID

DB

PROD

WEB

MID

DB

Deploy
Process

Rollback
Process

Restart
Process

Web
Component

Mid. Code
Component

Mid. Config
Component

DB
Component

This requires that the deployment automation tool be able to create complex
deployment processes and orchestrate and update multiple middleware serv-
ers and processes, as shown in Figure 4-9.

In addition to deployment processes, creating proper rollback processes is
also essential, as shown in Figure 4-10. Rollbacks may be needed for multiple
reasons. To begin with, if the deployment itself fails, whatever has been partially
deployed needs to be rolled back. Fully deployed applications may need to be
rolled back due to critical defects being identified. Rollback processes can be
complex, both for partially deployed applications (tracking what was deployed
and what was not) and for completely rolling back full applications—database
changes being one of the biggest sticking points. One approach states that appli-
cations are never rolled back at all, just forward. Rollback in such an approach
is rolling forward by deploying an older working version of the application and
replacing the application that needs to be rolled back. State and data changes
to the database still remain an issue here and need to be handled with care.

DevOps Adoption Playbook130

Figure 4-10: Deployment process, with rollback (in iBm urbanCode Deploy)

Database Deployment
Automation of deploying database components comes with very specific chal-
lenges that are unique to databases:

 ■ Updates to a database have to be incremental. While an application
component can be replaced entirely by a brand new version, this is not
viable for databases.

 ■ Database updates have to be done in an orderly manner. Each change
builds upon the previous change. Updates of multiple application WAR
files to an application server, for example, can be done in parallel or in
any order. For a database, updates need to be done in the prescribed
order to guarantee the final datasets in tables.

 ■ If you deploy an application component twice by error, it is a non-issue.
However, adding the same database record twice results in duplicate
records, which is not acceptable.

 ■ Database changes are irreversible. Application deployments can be
rolled back or overwritten. Databases can be rolled back only by replac-
ing the entire database from a backup.

Tools have been developed to handle database deployments, given their
special handling needs. Traditionally DBAs have used scripts, which need to be
manually managed and are error prone. To attain the scale and speed needed

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 131

for DevOps, automation is essential. Open-source tools like Liquibase and
dbdeploy, and commercial tools from Datical and DBmaestro, enable database
deployment automation for continuous delivery.

There are also the cultural challenges related to database deployment.
Updates to databases are controlled by DBAs. In traditional, non-DevOps-
enabled teams, the DBAs are in a separate silo from Dev-test. They are discon-
nected from developers and may not appreciate the rapid rate of change to
databases the developers need to enable continuous delivery. Furthermore,
they push back on automation where they don’t control the tools. This creates
challenges with establishing an integrated delivery pipeline, which includes
database deployment tools in the tool-chain for CD. To address these chal-
lenges, DBAs should be equal stakeholders in the squads, eliminating the
existence of a separate DBA silo.

The What, How, and Where of Deployment

When it comes to looking at the actual deployments, which need to be
automated and made continuous, you need to understand all three aspects of
deployments:

 1. What is deployed?
 2. How is it deployed?
 3. Where is it deployed?

The model in Figure 4-11, in UML notation (UML, 2005), shows the relation-
ship between these three aspects of deployments. This model represents how
these three aspects of a deployment are captured in IBM UrbanCode Deploy
Blueprint. Other deployment tools use similar concepts.

the all-rOunDer

In the history of cricket there have been few that have been gifted enough
to be considered weapons with both the ball and bat.

Only a handful of players can claim to be amongst this exclusive group,
while only a sprinkling of these will go down in the history books as being
an all-time great.

Even rarer still is a true all-rounder, someone who is equally adept with
both the bat and ball and has the ability to make a team as either a bowler
or a batter.

—Cheshire, 2012

DevOps Adoption Playbook132

Figure 4-11: Deployment automation “blueprints”

What to deploy?

How to deploy?
Where to deploy (physical

or cloud resources)?

Resource

Agent Agent Pool

Environment Application

Component

Snapshot

Version

Application
Process

Plugin

Plugin StepComponent
Process

Artifacts

The What? The what includes the artifacts that need to be deployed. These
may include code, configurations, database schema, data, content, web pages,
and so on. As the model describes:

 ■ Artifacts are all the assets that can be deployed, versioned, and stored
in an artifact repository.

 ■ Components are collections of versions of artifacts.
 ■ An application is made up of components.
 ■ Versions of components go together to form a snapshot—a set of version

components that need to be deployed with each other.
 ■ All applications, snapshots, components, and artifacts have versions.

Thus, when deploying, you can deploy an entire application, just some
components, or a snapshot (which captures a set of versions of components,
representing the entire application, or just a part of it).

The How? To deploy anything from the what, you need to carry out a series
of steps, which constitute a deployment process, or the how. These steps may
be technology specific. They may need to be orchestrated—done in a particu-
lar order, with logic between the steps. Certain steps may be capable of being
carried out in parallel with other steps. Others may have dependencies and
prerequisites. Furthermore, the process may have steps to handle failures in
individual steps or the overall process. As the model describes:

 ■ The application has a deployment process.
 ■ Each component making up the application also has a deployment process.
 ■ The application deployment process calls the individual component

deployment processes.

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 133

 ■ Each component process is made up of multiple steps, several or all of
which may be technology-specific steps that are executed by a tech-
nology-specific plug-in.

 ■ The deployment process may also be dependent upon the target envi-
ronment you are deploying to (the Where): is the component deployed
to an application server or a database, or is it an executable that needs
to be installed at the OS level?

 ■ The deployment process may also include steps that configure the application
itself, or the middleware, or the environment, to which it is being deployed.

The entire application deployment process is executed, or only a component
deployment process is executed, depending on whether you are deploying the
full application, or just a few components.

The Where? The where is the target environments you are deploying to.
Each environment you deploy to may be made up of several servers, each hav-
ing various application servers and other middleware installed on them. These
servers and middleware may need to have their configurations updated, as a
part of the deployment processes. As the model describes:

 ■ The environments are composed of nodes or resources.
 ■ Each resource has an agent that runs on it, which does the actual

deployment, and manages inventory.
 ■ Sets of nodes may belong to agent pools—sets of nodes that are identi-

cal, need to have the same sets of components deployed to them, and
have the same configurations.

 ■ There is mapping between the application components and the resources.
This mapping tells the deployment process which application compo-
nent needs to be deployed to which node.

 ■ The deployment process also specifies which configuration settings
need to be managed on each node.

There are two types of environments that you may be deploying applications to:

 1. Static. Static environments are steady-state environments. They have
a fixed number of nodes (servers), with predefined and static network
connections between them, forming a static topology.

When deploying an application to a static environment, the only
thing the deployment processes do with the environment is to man-
age the configurations of the various servers, and then deploy the right
application components across the right servers.

DevOps Adoption Playbook134

 2. Dynamic. As the name suggests, dynamic environments are not static.
The number of nodes changes over time, depending on various factors
that govern their state. Nodes are provisioned and de-provisioned, as
needed. While the network between the nodes is predefined, the topolo-
gies are more dynamic in nature.

When deploying to a dynamic environment, there will be scenarios
where nodes are provisioned independent of the deployment process,
and the application components just need to be deployed to the nodes
once they are provisioned. Alternatively, the application deployment pro-
cess itself may provide the nodes, based on rules and conditions embed-
ded in the deployment processes. The full stack is thus deployed—the
node and the application. I’ll talk more about this in the next section.

The advent of cloud-hosted environments is resulting in dynamic environ-
ments becoming the norm. These dynamic environments are designed as cloud
patterns. There are various cloud pattern definitions and standards, includ-
ing OpenStack Heat Orchestration Template (HOT), IBM Virtual System Pattern
(vSys), Amazon AWS CloudFormation template, and Docker Swarm. Other than
the definition of the virtual machine images (nodes) and their network con-
nectivity (topology), patterns also capture the behavior of the environments—
how they are orchestrated, based on process flows and rules included in the
patterns. Figure 4-12 shows such a pattern as an OpenStack HEAT template,
designed with IBM UrbanCode Deploy. I discuss cloud environments and the
role patterns play in continuous delivery more in the next chapter.

Figure 4-12: OpenStack heat pattern (in iBm urbanCode Deploy’s Blueprint Designer)

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 135

From a perspective of mapping application components (the what) to the
environments (the where), this is a simple process for static environments.
For dynamic environments, the applications need to be architected to scale
horizontally in order to support the dynamic nature of the environments that
scale up and down elastically, based on scale and functional needs.

Production-Like Environments One of the core tenets of DevOps
is providing Dev-test practitioners with production-like environments. One
of the key challenges and sources of inefficiency in the delivery pipeline is
that developers and testers do not have access to environments that even
remotely resemble the actual production environments. This can result in
applications being developed and tested in environments that function and
behave very differently in production environments, when they are even-
tually deployed there. The actual deployment process can be fraught with
errors if it has never been tested on an environment that is like the produc-
tion environment.

The ideal scenario would be that Dev, test, and other preproduction envi-
ronments be exact clones of the production environment. That is not viable
from an economic perspective as the infrastructure required could be cost-
prohibitive. The next best solution is to provide environments that closely
resemble the production environment in terms of functionality and perfor-
mance. You may not have the same scalability or the same number of compute
nodes, memory, storage, or network bandwidth as production. However, you
should ensure that the same general node topology exists, the same version
of OS and middleware is used, and the OS and middleware use similar con-
figuration settings.

Typical anti-patterns would be scenarios like the following:

 ■ Leveraging an open-source application server for Dev-test and a com-
mercial application server for production

 ■ Using different versions of server OS for different environments
 ■ Using custom, self-developed stubs to replace expensive-to-use services

for testing purposes, rather than service virtualization, which can prop-
erly emulate such services

 ■ Using test data that does not resemble production data schema
 ■ Not managing middleware configurations to match them to production

configurations, across the lower environments
 ■ Sharing test environments across multiple applications, resulting in

configuration and behavior drift

DevOps Adoption Playbook136

Full Stack Deployment What does a full stack deployment process actu-
ally deploy? Let’s look at what makes up the full stack (Figure 4-13).

 ■ Application (including application code and application configuration)
 ■ Data
 ■ Middleware configuration
 ■ Middleware
 ■ Operating system (OS)
 ■ Virtualization
 ■ Servers (compute nodes)
 ■ Storage
 ■ Networking

Figure 4-13: the full stack

Applications

Mid Config

Middleware

O/S

Virtualization

Servers

Storage

Networking

Data

When it comes to deploying the full stack, this means deploying all these
layers. In non-full stack deployment, all you deploy is the higher layers—
application data, application configurations, the application, and middleware
configuration. The rest of the lower layers are considered a part of the envi-
ronment and are provisioned prior to the application deployment. The exact
demarcation between what is deployed with the application deployment process
and what is provisioned with the environment is subjective and is dependent
upon the application being deployed. There are multiple scenarios where the
application deployment process includes deploying the middleware itself and
the environments being provisioned with only the bare OS on the nodes.

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 137

Continuous Integration to Continuous Delivery

The 4x100 relay race is just as much a skill event as a speed event. A team with four
decent sprinters can out-race a team with four better sprinters by beating the faster
team in the exchange zones. The key to this event is how much time the baton spends
in those exchange zones.

—Rosenbaum, n.d.

As you look at building a delivery pipeline tool-chain, one of the key points
of integration is the handoff of the deployable assets from the build and con-
tinuous integration tool to the continuous delivery tool. The continuous inte-
gration cadence should drive the continuous delivery cadence. Furthermore, if
the goal is to minimize the cycle time, then both build and delivery processes
should be fast. CI to CD should ideally be a continuous, seamless process,
with minimal cycle time (see Figure 4-14).

In most cases, it is recommended that there be a package or artifact repository,
in addition to the build tool and the delivery automation tool, in the delivery
pipeline. This artifact repository acts as the repository for all the deployable
assets, configurations, and their dependencies. It becomes the single source of
truth—the one repository where any stakeholder can go to in order to get the
right sets of assets needed to deploy an application or component. This reposi-
tory can be in series, or in parallel to the build tool, making it a delivery tool
integration point. That is, it may be between the two tools, where the build
tool pushes the assets to the repository, and the deployment tool picks it up
from there (serial path), or it may be to the side, where the build tool publishes
the assets to the repository every time it hands them off to the deployment
automation tool (in parallel).

The artifact repository remains just a pass through when in a continuous
delivery cycle. However, when a deployment is needed out of cycle—to re-
create a defect, for example—the artifact repository becomes essential in

Figure 4-14: Continuous
integration to continuous
delivery

Build Package
Repo

Deploy

DevOps Adoption Playbook138

ensuring that the right versions of the right sets of assets are deployed. The
repository also becomes an essential enabler of end-to-end-traceability, as it
has all version sets of all the deployable assets.

From a tooling perspective, there are myriad artifact repositories. There are
general-purpose repository managers like JFrog Artifactory, or Nexus from
Sonatype. Most deployment automation tools come with their own embed-
ded artifact repositories, which store only deployable assets. IBM UrbanCode
Deploy has a repository called CodeStation embedded in it. When using an
embedded repository, it is not uncommon to also see a general-purpose reposi-
tory in use. The embedded deployment automation repository stores copies of
assets that have been deployed.

Push versus Pull Handoff

There are two approaches to hand off from CI to CD:

 1. A pull mechanism. In this approach, the deployment automation tool
pulls the deliverable assets from the build tool or artifact repository.

 2. A push mechanism. In this approach, the build tool or artifact reposi-
tory pushes the assets into the deployment automation tool.

When practicing continuous delivery, push is the preferred method of opera-
tion. The build tool completes a build and then pushes it on, triggering a
deployment. In a pull approach, there can be issues because there is no way

three wayS tO paSS the BatOn

Each of the three ways to pass the baton has pros and cons. Drummond
prefers the push-in method, which is often considered the safest, although
not always the fastest.

Push-In: Receiver’s palm faces toward the incoming runner, who holds the baton
vertically and pushes it straight in.

Upsweep: Receiver’s palm faces down; the incoming runner swings the baton
up between the thumb and fingers.

Overhand pass: Receiver’s palm faces up, and the incoming runner places the
baton in the crease of the hand.

—Jon Drummond, United States Olympic 4x100 relay gold medalist (2000)
and coach (2012) (Ward, 2012)

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 139

for the deployment automation tool to know if the build has completed or
if all the deployable assets needed to deploy the component are available. It
may result in deployments of a partial set of assets. Pull works just fine when
deploying assets that have been built beforehand and may have even been
deployed previously (that is, not in a continuous delivery cycle). Because only
the build tool knows when it is all done with the build process, it is better to
let it trigger the deployment, once done.

adopting Continuous Delivery
One of the biggest reasons for challenges during release to production is that
for projects not practicing continuous delivery, the first time the application
is deployed to the production environment is during release to production.
When it comes to the actual deployment of the application, the deployments
of various components often fail, or they have challenges because this is the
first time the deployment processes, even those that are automated, are being
executed in the production environment. They have never really been tested
and validated. This, along with several other challenges discussed in this
chapter, is why traditional projects have a release weekend when software is
released, with the entire team on hand for the entire weekend (or longer) to
fix things as they break during deployments of various components.

When practicing continuous delivery of applications, you are validating not
only the functionality and performance of the components being delivered
and the environments they are being delivered to but also the processes of
deploying the components. Deployment of the software is not as simple as
copying some binaries over FTP. It involves file transfers to multiple loca-
tions on a potentially complex set of nodes, but it also involves configuration
changes to the OS, databases, and middleware. It also involves an orchestra-
tion of steps. You cannot simply carry out deployment steps in a mechanical,
linear manner. Middleware processes may need to be restarted after configura-
tion changes. Services may need to be stopped before file transfers and then
restarted, all in a coordinated, orchestrated manner. Continuous delivery
allows for these processes to be tested and refined to ensure that when it
comes to the final deployment to production, it is not the first time the team
is executing the processes. As multiple deployments happen through multiple
cycles or sprints, the processes are tested and debugged continuously and are
thus proven to work at all times. Furthermore, these deployment processes
should also include the processes to deploy the environments, not just the
applications.

DevOps Adoption Playbook140

The key here is to start continuous delivery right from the start of the
project—from sprint zero—all the way through the project. In the begin-
ning, the deployments may be simple, but they will become much more com-
plex, orchestrated deployments later in the project. Continuously delivering
changes—application, middleware, configuration, data, and environment—in
small pieces, using the right automation tools, reduces risk by validating the
automation, the deployment processes, the configuration changes, the envi-
ronments being deployed to, and, of course, the application being deployed.

Deploy right from sprint zero. What do you deploy in sprint zero? There
is no code yet. That’s easy: you deploy the environment. Get the Linux (or
if you really have to, Windows) distribution and install it—somewhere…
get started.

The Continuous Delivery Platform

Give me a platform. Let’s rock, let’s rock, today.

—Dewey Finn (Jack Black, perf.), in School of Rock. Paramount Pictures, 2003.

Eventually the goal is to deliver a platform to the practitioners, a platform
on which they can continuously and efficiently deploy the application to Dev,
test, SIT, UAT, and eventually production environments. The goal of the plat-
form is to introduce a layer of abstraction between the infrastructure and the
application delivery pipeline capabilities. A practitioner should not need to
worry about the nuances of the infrastructure; the hardware, the hypervisor,
the virtual machines, the datacenter, and the network should all be abstracted
away from the practitioners. They need to focus on their goal of developing,
testing, and delivering the applications and services, without any concern
about what is being provisioned on what kind of infrastructure and where.
The environments should appear to them as well-defined, well-architected,
seamless, always-available, resilient, scalable environments, fine-tuned for
their application’s and service’s specific needs. This abstraction can be provided
either at the infrastructure layer, delivering the Infrastructure as a Service
(IaaS), or at the platform layer, delivering the Platform as a Service (PaaS), or
by leveraging containers that create an API-based segregation between the
application or service being delivered and the infrastructure services. All three
options have their strengths and weaknesses. I discuss them in detail in the
next chapter.

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 141

Whatever the level of the abstraction may be, creating a platform for the
application delivery practitioners is essential. This platform will need to span
the various environments that make up the delivery pipeline. Such a platform
is constructed by building a tool stack that provides the various services or
capabilities needed to enable the delivery pipeline. The tool stack typically
includes tools or services that provide the following capabilities:

 1. Source code management
 2. Build
 3. Continuous integration
 4. Deployment automation
 5. Middleware configuration
 6. Environment configuration
 7. Environment provisioning

Several other services can be added to this list to form a fully functional
platform, but these are the bare minimum required to create a functional plat-
form. If you are doing full stack deployment, capabilities 4 to 7 are included in
a single environment pattern, which includes the complete stack— application
to compute nodes—and is provisioned as one process. If you are not doing
full stack deployment, then each capability is a separate service, and the envi-
ronments are not provisioned every time the application is deployed. The
middleware and environment may still need to be configured every time a
new version of the application is deployed.

A tool stack to enable such a platform would include the following:

 ■ A source code management tool, like Git, GitHub, Subversion, or
Rational Team Concert

 ■ A build and continuous integration tool, like Jenkins or IBM UrbanCode
Build

 ■ A deployment automation and middleware configuration tool, like IBM
UrbanCode Build or XebiaLabs Deployit

 ■ An environment configuration tool, like Chef, Puppet, or Salt
 ■ An environment management tool, or provider, like VMware vRealize,

IBM Cloud Orchestrator, or Amazon Web Services EC2

Leveraging a standardized, integrated tool stack is essential. To ensure
portability and prevent vendor lock-in, these tools should be based on open
standards.

DevOps Adoption Playbook142

play: Shift left—testing

In the DevOps delivery pipeline, shift left testing involves enabling the testing
to happen as early (left) in the delivery pipeline as possible. This applies to all
types of testing: unit, functional, regression, integration, performance, stress,
security, and so on. Typically, other than unit testing, this is done by developers;
all other forms of testing happen later in the delivery pipeline. Some forms of
testing—like performance testing, load and stress testing, or security testing—
typically do not happen till just before the final release. In large multi-vendor
projects, it is not uncommon to see even integration testing left till the last phases
of the project. This late testing prevents the discovery of defects and issues till too
late in the project, resulting in high risk and high cost of fixing the defects and
issues. I am sure most people remember the issues with the U.S. healthcare.gov
website when it was launched in October 2013. Most of the issues were attributed
to testing happening too late in the release cycle, allowing critical defects to go
undetected when the website was released (Pollock, 2013).

Shifting testing to earlier in the lifecycle offers two benefits:

 1. Early testing means early discovery of defects and issues, lowering their
cost of mitigation and lowering the overall project risk.

 2. Early testing means that it happens more often and addresses smaller
change sets (smaller batches). This more frequent testing of smaller
sets of changes significantly lowers the associated risk and raises the
overall quality of the deliverables, as they are tested more often.

Shift left testing requires creating production-like environments where more
realistic tests can be done earlier in the delivery lifecycle. Techniques such

hOw the “Shift” wOrKS in BaSeBall

The first part of a defensive shift is obvious: three infielders are swung around
to one side of the field. The less obvious part is how the hitter is pitched; throw
off-speed pitches or inside fastballs and force the hitter to pull the ball.

And if the hitter is extremely pull-prone, you can throw those fastballs
wherever you like and count on the hitter pulling the ball into an overloaded
defense.

—Judge, 2016

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 143

as service virtualization, emulation of production data, and production-like
simulated load are used to create environments with low overhead. I will
discuss service virtualization in more detail later in this module.

Test automation and Continuous Testing

Obstacles don’t have to stop you. If you run into a wall, don’t turn around and give
up. Figure out how to climb it, go through it, or work around it.

—Michael Jordan, basketball icon

What is the goal of continuous integration? Is it to enable continuous deliv-
ery of the developers’ code out to production? Yes, eventually. But before that,
it is to enable ongoing testing and verification of the code. It is to enable the
testing needed to validate that the code produced and integrated with that from
other developers and with other components of the application functions and
performs as designed. Continuous integration and delivery are both (almost)
meaningless without continuous testing. What good is having a streamlined
continuous delivery process if the only way you find out about your applica-
tions’ functionality or performance being below par is via a ticket opened by
a disgruntled user?

As developers create code to add new functionality, enhance existing func-
tionality, or address defects, they are continuously integrating their code with
that of other components being developed and delivered to the integration
stream. Along the way, they run unit tests on their own code. Once the inte-
gration is done, they do integration testing on the integrated code. They may
run other tests such as white box or code-level security tests, code performance
tests, and so on. This work is then delivered to the common integration area
of the team of teams—integrating the work of all the teams working on the
project and all the code components that make up the service, application, or
system being developed. The important point to note here is the immediate
step after the continuous integration process is always to validate that the code
integrates at all levels without error and that all tests run by developers run
without error. Continuous testing therefore starts right with the developers
as a part and parcel of continuous integration.

After validating that the complete application (or service or system) is built
without error, the application is delivered to the QA area. This delivering of
code from the Dev or development environment to the QA environment is the

DevOps Adoption Playbook144

first major step in continuous delivery. Continuous delivery is happening as
the developers deliver their code to their teams’ integration space and to the
project’s integration space, but this is limited to being within the Dev space.
No new environment is being targeted. When delivering to QA, I am speaking
of a complete transition from one environment to another. QA would have its
own production-like environments on which to run its suites of functional
and performance tests. In addition, QA would potentially also need new data
sets for each run of the suites of tests it runs. This means that the continuous
delivery process would not only require the processes to transition the code
from Dev to QA but may also include steps to provision new instances of QA’s
production-like environments, complete with the right configurations and
associated test data to run the tests against. This makes continuous delivery
a more complex process than just FTPing code over. The key point is that the
goal of continuous delivery is to get the code ready for testing, and to get the
application to the right environment—continuously, so that it can be tested
continuously.

If you extend the process described here to delivering the service, appli-
cation, or system to a staging and eventually a production environment, the
process and goal remain the same. Traditionally, despite all the testing done
earlier in the delivery lifecycle, the Ops team wants to run their own set of
smoke tests, acceptance tests, and system stability tests before they deliver
the application to the must-stay-up-at-all-costs production environment. The
security team wants to run their own set of security and compliance tests,
again in a production-like environment. These are production-like environ-
ments that need to be provisioned just like the QA environments. They need
to have the necessary test automation and test data for the various tests that
will be run. Only when this last phase of continuous testing is complete will
the application be delivered to production.

In a nutshell, if you need to shift left all these various tests and run them
early and often, four key capabilities need to exist:

 1. Ability to provision production-like environments, as and when
needed

 2. Ability to automate the tests, to make them fast and repeatable
 3. Ability to virtualize services and environments that are not available,

or those that would significantly increase the cost of testing
 4. Ability to provide (continuously) new sets of test data required for the

multiple sets of myriad types of tests being run, early and often

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 145

The concept of production-like environments has been already covered. The
need for automating tests is self-evident. It is not possible to scale testing staff
to meet the needs of the rapid and repeated testing needed to enable shift left
testing. What good is an efficient cycle of two-week sprints, if running func-
tional tests takes up three to four days of the sprint? What good is efficiently
delivering the application, only to be held up for the three weeks that the
security team needs to run all its tests and validations? It is thus essential that
all tests be automated. Automation allows the testing to be fast, modularized,
repeatable, and included as a part of the continuous integration and continu-
ous delivery processes. Automation tools exist for all forms of testing: unit,
integration, functional, performance, load and stress, security, policy testing,
and so on. These tools should be included in the integrated delivery pipeline
to ensure continuous delivery of components, applications, and services that
are thoroughly tested, early and often.

I will now discuss the last two capabilities—service virtualization and test
data management—needed to enable shift left testing.

Test Service and environment Virtualization

Deploy what is ready, virtualize the rest.

—IBM testing practice

When you are ready to deploy a component, service, or complete application
to a test environment, in order to run some tests, all the services, applications,
environments, and data sources that are needed to test the application under
test will not be available. Others may be available, but utilizing them for testing
purposes, especially when testing repeatedly small sets of changes, may be cost
prohibitive. It is not practical to wait for all of the services to become available
in time to run the tests. This can become a major bottleneck in the delivery
pipeline. In any of these cases, these applications, services, environments, or
data sources that are consumed or utilized by the application under test to
function, need to be virtualized. Traditionally, developers have written stubs
to replace applications or services that are not available for testing. Writing
and maintaining such stubs is time-consuming, expensive, and error prone.
Utilizing service virtualization tools resolves this problem by introducing
automation and scalability to the process. Such tools include IBM Rational Test
Virtualization Server (previously Green Hat) and CA Service Virtualization

DevOps Adoption Playbook146

(previously ITKO LISA). These tools allow for applications, services, and data
stores to be simulated by virtual representations running on a test virtualiza-
tion server. See Figure 4-15 below.

You begin by running tests with several of the required applications, ser-
vices, and data stores being virtualized. As the project matures, more and more
of these applications, services, and data stores become available. The virtual
instances are then progressively replaced by actual instances, as they become
available and usable. Eventually, tests need to be done with all real instances,
before the application under test can be released to production.

In addition to application, services, and data stores, environment availability
can also become a bottleneck. In mainframe environments, for example, it is
not uncommon for a logical partition (LPAR) to be dedicated for testing and
shared by multiple applications. In contrast, in distributed environments, it is
not uncommon to see servers dedicated to test labs running at utilizations in
the single digits. This happens because the process of acquiring, provisioning,
and configuring the test environments is so cumbersome, that once a project
gets an environment, they reserve it and keep it idle for most of the time, just so
that they have it whenever they need it for testing. The mainframe challenges
are unique, and I will discuss them later in this chapter, in a play dedicated
to the mainframe. Introducing cloud-hosted environments in the test lab is
essential to address these availability and utilization issues. These environ-
ments can be on a private or public cloud. Cloud-hosted environments allow

integrated with
Deploy what is ready,

virtualize the rest

Continuously test in
production-like environment

Test using real world
network conditions

IBM UrbanCode Deploy

IBM Rational Test
Virtualization Server

Network virtualization

IBM Rational Test
Workbench

Databases Internal
messages

Test environments

Third-party
services

Simultaneously
test across

multiple test
stages

Dynamic infrastructure

Virtual components

Development Quality
assurance

Figure 4-15: test service virtualization

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 147

for test environments to be made available on demand and to be de-provisioned
when they are not needed.

A new class of cloud offerings in the continuous testing space are test-
environment-as-service features. These features offer scalable cloud-hosted
environments that can fully clone an existing on-premises or cloud-hosted
environment for Dev-test purposes, by importing all the existing environment’s
virtual machines. Some of these environments that are built for DevOps also
have the capability to create complete clones of an environment, including
state and network (Internet Protocol or IP addresses). The use case is ideal for
enabling continuous testing. If a tester finds a defect, she can create a complete
clone of the environment, capturing the state at which the defect was found.
She can then send the developer a URL pointing to the clone, and it is then
re-provisioned for the developer on an appropriate cloud datacenter, creating
a clone with the right environment, tools, state, and network addresses. This
eliminates the bottleneck of developers struggling to re-create a defect identi-
fied by a tester. IBM Development and Test Environment Services (IDTES),
provided with technology from a company called Skytap, is a good example
of such a service.

Test Data Management
Test data management is about easily creating targeted, right-sized test data-
bases rather than cloning entire production environments. Without the need
to manually create and maintain test data, development and test environ-
ments are more manageable for continuous testing. Simply stated, test data
management is the process of quickly creating realistic test data at the time
it is required for testing.

 So, how does test data management fit with DevOps? As discussed
before, DevOps requires that developers and testers deploy applications
regularly in order to validate their integrations, functionality, and perfor-
mance. The goal of testing in DevOps is to perform these validations by
carrying out appropriate integration, functional, and performance tests.
This implies that applications should be tested every time they are inte-
grated and deployed, requiring sets of test data each time. Providing good
sets of test data is inherently challenging. This is further exacerbated by
the need to test the application with new and refreshed test data each time
developers deploy a new version of the application. In order to address
these challenges, test data management thus becomes a prerequisite to the
very existence of DevOps.

DevOps Adoption Playbook148

The following is a list of best practices for test data management that enable
continuous integration and delivery for DevOps (Moran, 2013):

 ■ Discover test data. Test cases need to be associated with the appropriate
test data, and finding the right test data for each of the test cases is criti-
cal. In some cases, this data may exist across several production data-
bases. For example, an application might use data from a customer record
from a customer relationship management (CRM) database along with
related details on purchased items from a separate inventory management
system database. The goal is to capture the end-to-end business process
and associated test data, wherever it may reside. This will enable teams
to extract the appropriate data into the subset needed for the test cases.

 ■ Automate creation of realistic “right-sized” test data. Organizations are
creating test data either manually or by just cloning their entire pro-
duction system to obtain their test data, instead of extracting only
the subset of test data needed to support the test case. These manual
processes do not provide the agility needed for continuous integration
and delivery for DevOps. Automated test data generation allows for
rapid creation of test databases for various types of testing on demand.

 ■ Mask sensitive information for compliance and protection. Protecting data
privacy is no longer optional—it’s the law! Organizations must have
procedures in place to de-identify data across non-production environ-
ments to comply with data privacy regulations and avoid data breaches.
Data masking provides development teams with meaningful test data,
without exposing sensitive private information such as personally
identifiable information (PII) and protected health information (PHI).
Masking takes real data and makes it realistic but fictional so that no
sensitive data is compromised.

 ■ Refresh test data for continuous delivery. To enable continuous delivery,
testers and developers need access to test data continuously in order
to run tests each time a new version of the application is delivered and
run them again for the next version. Organizations can streamline
test data delivery by enabling testers and developers with tools and
processes to refresh test data without the need to involve DBAs. This
improves operational efficiency, provides more time for testing, and
enables releases to be delivered more quickly and continuously.

 ■ Analyze test data results. While functional testing confirms the behavior
of the application, test data management enables organizations to assess

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 149

changes in test data for success or failure. Analyzing test data results by
comparing pre-test data against post-test data helps to assess whether
the test passed or failed. This best practice addresses any hidden errors,
allowing organizations to quickly identify and resolve defects for con-
tinuous integration and delivery.

play: Shift left—Ops engagement

There has always been a healthy tension between development and opera-
tions teams. In most enterprises they are in separate reporting structures,
typically under different executives, keeping them organizationally apart. The
reasoning behind the “tension” is justified and not really negative in nature.
Dev wants be able to take the new or updated applications and services they
have developed and deploy them in stable and fast environments provided
by Ops, in a continuous manner. Ops, on the other hand, wants stability and
control. They want all the applications they run to co-exist and not affect each
other or the systems they run on. They want the Dev team to build applications
whose system needs to conform to their specifications and require minimal
attention, once deployed.

Developers view operations as the people who just run the ferries that carry their
precious cargo. Operations view developers as the providers of the payload their
precious ships are designed to carry. (Any resemblance to jokes about how the United
States Navy and Marines view each other is entirely coincidental…)

—Overheard at a DevOps conference

pulling the gOalie

The most exciting 90 seconds in sports are created by a man who isn’t
there. A hockey team is down a goal or two with the clock ticking toward
double digits, and the coach pulls the goaltender and sends an extra skater
over the dasher for an all-or-nothing gamble. More often than not the puck
bounces off sticks, bodies, and walls or ends up in the empty cage. But the
six-on-five gamble works often enough that it’s worth the risk, especially
when the alternative is extinction.

—Powers, 2013

DevOps Adoption Playbook150

As mentioned in “Play: Agile Adoption,” the advent of Agile development
practices has increased this tension by an order of magnitude. Developers who
are practicing continuous integration want Ops to be able to provide environ-
ments capable of continuous delivery. The QA teams want the test environ-
ments to be provisioned on demand, to the specifications of the QA team,
and the QA environments to be built ideally to mirror the production (Prod)
environment. Once QA has tested and approved the application, preferably
using automated tests, the continuous delivery process then delivers the appli-
cation to a higher environment for further testing and eventual deployment to
production. All these environments should also be provisioned automatically
and mirror the production environment.

In an ideal world, all of this happens automatically and continuously.
Environments (Dev, test, and so on, all the way to production) are provi-
sioned and configured for the application in question, as and when needed.
They are also destroyed automatically, once the application is promoted to
the next environment.

This is obviously a major cultural and technological shift for operations.
They suddenly don’t just do one deployment of a new version of an application
every few months but now have to deal with potentially hundreds of builds
that the developers produce weekly or even daily. This is further complicated
if these are builds that they little have little or no confidence in. Furthermore,
they are now expected to spin up new environments to test and validate most
of these builds!

They therefore need to change how they engage with Dev-test, how they
handle change, how they manage their environments, and how they automate.
To fully adopt DevOps, Ops needs to be on board and willing to change. Most
importantly, trust needs to develop between Ops and Dev. This trust can be
enhanced by taking the following steps:

 ■ Shift-left engagement: One critical goal of DevOps is to engage Ops
earlier in the delivery lifecycle and keep them engaged throughout. In
traditional waterfall projects, Ops engagement is primarily limited to
when there is something to deploy. Ops may be involved in developing
system design and defining specifications and requirements during the
requirements phase but then remain disengaged till Dev teams start
deploying working code (builds). For DevOps adoption, Ops teams need
to be engaged regularly, as an integral part of the team, all through the
process. Shifting left can begin with a step as simple as having an Ops

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 151

team member participating in the Dev teams’ daily standup meeting (a
Scrum and extreme programming concept). Different teaming models
that are employed to include Ops in the team are discussed later in
this book.

 ■ Get Agile: Ops needs to adopt (some of) the Agile practices that Dev has
already adopted. They need to start using their sprint structures, work
item management strategies, work burn down charts and dashboards,
which capture the work backlog, and so on. Preferably, they will do this
using the same tools and repositories as the developers. This does not
mean that Ops starts adopting a methodology like Scrum, with two-
week sprints, but that they become more agile to align their ability to
make changes with the speed of the Dev-test teams. This reduces the
impedance mismatch between them.

 ■ Virtualization and automation: Adopting software-defined environments
provides the ultimate level of agility for Ops. I discuss these environ-
ments in detail in later plays.

 ■ Change management: Operations need to adapt their change man-
agement practices. This does not mean abandoning proven practices
like ITIL but extending and adapting them to handle the order-of-
magnitudes-higher number of change management tasks that now
need to be performed for all these environments being provisioned
and de-commissioned and builds being deployed. This requires the
automation of all Ops tasks, from provisioning and orchestrating envi-
ronments, to implementing policies; to leveraging software-defined
environments; and to standardized dashboards capturing all relevant
metrics and operational KPIs.

Changing of ops Roles
As with most transformations, the role of the Ops teams changes with a DevOps
transformation. Engineers who are responsible for the infrastructure or plat-
form are the ones most impacted by these role changes. Before the DevOps
transformation, they are responsible for doing all the management tasks on
servers, such as provisioning and de-provisioning of servers, orchestrating and
configuring server behavior, and installing and patching OS and middleware.
With DevOps, they no longer perform lower-level tasks; their role changes to a
higher level of abstraction where they design, create, and manage patterns and
also manage running environments provisioned by these patterns.

DevOps Adoption Playbook152

The Ops teams provide these patterns, making them available to practitio-
ners, from Dev to test to production, via a self-service catalog. The patterns
themselves are environment topologies, with pre-built images, with associated
policies for their governance, pre-defined process flows for their orchestration,
and scripts for their configuration. Practitioners can provision these patterns
to get environments on-demand, configure them within the constraints of
the defined policies, orchestrate their deployments using the process flows,
configure them using the configuration automation scripts, and deploy appli-
cations and data to them, as needed. When the environments are no longer
needed, they de-provision them. All of this happens with no direct manual
engagement from the Ops team.

If the practitioners need to make a change that lies outside what is permit-
ted by policy, which is defined by practitioner role, they put in a request for
a change to the Ops team, who will create a new pattern or a new version of
an existing pattern for them.

This is the next level of working for Ops, delivering a much higher-leverage
productivity and, at the same time, making working with environments
much leaner and more efficient for practitioners working with Dev-test-prod
environments.

Such a mechanism is, of course, best enabled in a cloud-based environ-
ment. However, the level of abstraction at which Ops works can also be
elevated for non-cloud environments. How much control the Ops team
hands off to practitioners in Dev-test is also technology dependent, as there
are restrictions when not using a cloud-based environment. For example,
only when using a cloud-based environment, leveraging technologies like
OpenStack Heat Orchestration Templates, can you achieve the design and
provisioning of patterns capturing full stack environments—that is, envi-
ronments that include all the layers of the environment, from compute,
memory, storage, and network, to OS and middleware, and the eventual
application and data, all in one pattern, delivering full software-defined
environments.

When operating in a legacy environment like a mainframe where Dev-test
environments are typically on dedicated logical partitions (LPARs), the Ops
teams are not going to relinquish any control of the environments to developers
and testers. Allowing someone outside the Ops team to provision middleware
on a test- or production-dedicated LPAR, for example, would be a no-no. They
would do that themselves and allow Dev-test practitioners only to deploy
applications to the LPAR or to the middleware servers.

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 153

On the other end of the spectrum, if using containers, the Ops team would
not care about what Dev-test practitioners deploy or configure inside a set of
containers, as long as the containers themselves are coming from an image
from an Ops team-approved image registry. Isolating Ops from what’s inside
a container, of course, is the very premise of the value containers.

As you move to a model that is based on delivering applications on a
Platform as a Service, the role of the Ops teams changes even further. The
platform may be vendor managed altogether (like IBM Bluemix PaaS), and
furthermore there may be third-party services from multiple vendors that
are being consumed by the applications being delivered. The role of Ops here
becomes one of a service broker and orchestrator, who is managing the internal
and vendor-delivered services, dealing with their contracts, metering, security,
and SLAs. They ensure that all the application services and PaaS-provided
cloud services are available and are functioning and performing as desired to
keep the organization’s own developed applications and services up and run-
ning. If the organization is also delivering services to its clients and partners
and they in turn are consuming to develop their own applications, the role of
Ops also includes managing these outgoing services—their contracts, meter-
ing, security, and SLAs—ensuring the consumers of the services are able to
consume them as desired.

This change in the role of Ops requires that a good, comprehensive, cross-
platform monitoring and continuous feedback practice be put in place. That is
the only way Ops teams can ensure that environments and systems are behav-
ing and performing as desired, without having to be hands-on with each one.

IT Service Management and Devops
A common discussion, and often pushback, that occurs when adopting DevOps
is regarding how DevOps aligns with IT service management (ITSM) frame-
works like Information Technology Infrastructure Library (ITIL), Business
Process Framework (eTOM), or Control Objectives for Information and Related
Technology (COBIT). Of these, over the years ITIL has become the go-to
framework for most IT organizations to build a set of documented, repeatable
processes to manage and govern the IT services delivered to the organization,
upon which the applications delivering business value to the customers and
users are deployed, run, and managed. The quality, scalability, stability, and
predictability of these IT services are essential for the applications to run in a
scalable, stable, and predictable manner. ITIL practices provide the framework
that IT organizations can adopt in order to support these needs. Introducing

DevOps Adoption Playbook154

DevOps practices like continuous delivery appears to be at odds with ITIL
practices, which are geared toward rigorous change management and service
management processes. In reality, DevOps practices, which are geared to pro-
vide efficient, repeatable, automated, scalable processes, align fully with the
goals of ITIL. While the increased frequency of deployments may appear to
add to the complexity that the change management and service management
processes have to handle, the reduced batch size and shorter cycle times actu-
ally reduce the risk associated with each deployment. The same ITSM practices
are now handling smaller changes more frequently, rather than large, complex
changes less frequently.

ITSM practices, from frameworks like ITIL, provide capabilities that sup-
port DevOps in four core areas (Hodges, 2015):

 ■ Configuration management, ensuring consistent production-like envi-
ronments across Dev, Test, and Prod.

 ■ Incident management, enabling timely corrective actions to issues and
incidents identified in any environment.

 ■ Infrastructure and application performance management, providing the
continuous monitoring required for sustained application quality. I
will discuss this more in the section “Play: Continuous Monitoring
and Feedback.”

 ■ Business service management, providing business dashboards powered
by analytics, giving all stakeholders continuous business feedback, and
allowing them to adjust their plans if necessary.

IT service management practices and tools thus enable and ensure consis-
tent and reliable operation and feedback to all the stakeholders in the deliv-
ery pipeline. They enable the shift left of Ops engagement to earlier phases
of the lifecycle and also provide capabilities for continuous feedback, which
enables continuous improvement of the application, environments, and deliv-
ery processes.

The critical component of the play of aligning ITIL practices with DevOps
is twofold:

 ■ Make the ITIL practices leaner and more efficient in order to make the
cycle time of addressing requests coming to IT—change management,
or incident management related, for example—shorter.

 ■ Reduce the manual steps in approval processes for IT by introducing
policy- and rule-based automation.

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 155

 ■ Automatically capture metrics and audit trail data across the integrated
delivery pipeline as evidence of compliance to ITIL controls.

Areas where automation can add significant value for ITSM processes are
as follows:

 ■ Orchestration automation for services and environments using a busi-
ness process management (BPM) based orchestration tool, such as IBM
Cloud Orchestrator (ICO) or VMware vRealize

 ■ Automation of logging and alerting, and associated analytics leveraging
tools like Splunk or IBM Operations Analytics

 ■ Operationalization of processes for incident management, using tools
like ServiceNow or IBM Control Desk

play: Continuous monitoring and feedback

SOCCer perfOrmanCe feeDBaCK

In September 2008, when the [Manchester City Football Club] was acquired
by the Abu Dhabi United Group for Development and Investment, a private-
equity outfit owned by a member of the Abu Dhabi royal family, the team
suddenly found itself with the resources necessary to mount a challenge
for the Premier League….

After each match, they compile exhaustive reports about the team’s
performance data, focusing on statistics that they think most relevant. The
list is extensive. They analyze, for instance, the number of line breaks, a
term borrowed from rugby which means a forward pass that goes through
the opposition’s midfielders or, more crucially, its line of defenders. They
look at what happens in the 20 seconds after the team wins or loses the
ball. They pay attention to City’s ball possession in the last third of the
pitch, a measure that they found to be strongly correlated with winning
matches.

—Medeiros, 2014

Because one of the goals of DevOps is the rapid feedback of metrics and ana-
lytics back to all stakeholders in the delivery pipeline, establishing continuous

DevOps Adoption Playbook156

monitoring and feedback capabilities is essential. DevOps guru Gene Kim, in
his blog post Three ways of DevOps, describes this under the goal of amplify-
ing feedback loops (Kim, 2013). He states that “the goal of almost any process
improvement initiative is to shorten and amplify feedback loops so necessary
corrections can be continually made.” Feedback is the input that is essential
to make improvements to the applications and environments that are delivered
and the processes being utilized to deliver them.

When someone mentions continuous monitoring, the tendency is to focus
on, monitoring of production environments alone. However, continuous moni-
toring includes monitoring of every environment in the delivery pipeline: Dev,
test, and prod. Similarly, continuous feedback means feedback from every
process in the delivery pipeline, including tests run, defects found, work items
backlogged or deferred, requirements changed, and incidents in production.

What is essential is to ensure that the feedback be provided in a form that is
consumable by the stakeholders it is being provided to. Providing logs to busi-
ness analysts does not provide much value to them. However, analytics related
to the root causes of spikes in the usage of particular features, or changes in
user behavior based on a configuration or UI change, are very relevant to the
business analysts.

Providing Monitoring and Feedback
When talking of monitoring and feedback, one does not just mean monitoring
in production but across the entire delivery pipeline. Monitoring and gather-
ing feedback from nonproduction environments can identify potential issues
related to performance early in the lifecycle, long before the application or
service is deployed to production, allowing for the issue to be identified and
addressed. Across the delivery pipeline, monitoring comes from five areas:

 1. Application monitoring. Gather metrics and analytics to see if the appli-
cation is functioning and performing as desired. If not, under what
conditions are there issues, and what types of issues?

 2. System monitoring. Is the entire system, including the underlying infra-
structure, functioning and performing as desired? If not, what work-
load or infrastructure (compute, memory, storage, network, and so on)
conditions are the issues caused by?

This also includes incident management.

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 157

 3. Application user behavior. How is the application being used? Are certain
features and capabilities used more or not at all? Where do users spend
their time in the application? What are they doing—using features or
struggling to get things to work?

This also includes doing A/B testing, where multiple variants of
the application are delivered to different sets of users to test new fea-
tures and capabilities. I discuss A/B testing in more detail in the next
chapter.

 4. User sentiment. Ensuring that the user experience (UX) is a positive
and productive one has become the core of most system of engage-
ment applications. These are applications that deliver business value
directly to the end-user. Several techniques and frameworks have
recently been developed to deliver this high-quality user experi-
ence, including design thinking, Lean UX, and so on. Measuring the
user’s experience to determine how user-friendly their user experi-
ence actually is thus becomes an essential measurement and source of
feedback to the UX designers. This has led to the development entire
sets of practices and tools to measure and capture user sentiment—
how the users are feeling. Tools are available to measure a user’s
actual interaction with the app—which parts are they using, are
they struggling in some areas, are they productive, or do they seem
lost in the app? There are also tools that actually capture direct user
interactions. A good example is the IBM Mobile Quality Assurance
(MQA) tool.

Another critical source of feedback on user sentiment is social media.
It should not be ignored, given the tendency of many consumers to make
decisions based on what they see and hear on social media. Tools and
services like IBM Watson Analytics for Social Media can capture social
media postings across myriad channels and analyze them to provide a
holistic view of the user base’s sentiment.

 5. Delivery pipeline metrics. All metrics gathering and analytics capabilities
need not be limited to end-users and systems in production. The deliv-
ery pipeline and all the stakeholders working on artifacts through it is
a rich source of metrics. These metrics can deliver an accurate status
of projects, tools, environments, artifacts, and work being delivered.
I’ll discuss this next.

DevOps Adoption Playbook158

Delivery Pipeline Metrics

intrODuCing hygieia

At Capital One, we believe that while tools, automation and collaboration are
very important, a continuous feedback loop is critical to DevOps success….

So after evaluating many such dashboard products, we decided it was
time to create our own because Capital One needed one single dashboard
to visualize the full delivery pipeline at any given point in time.

When designing and building the dashboard, we focused on making it
simple to configure and easy to use. Plus, since we knew it would be useful
to others, we built it with the intention of sharing it with the world and
offering an open source version.

Our DevOps dashboard, now known as HygieiaSM (Figure 4-16), is used
extensively across Capital One, and we’re pleased to now offer it to you….

The main purpose of this dashboard is to make any clog in the pipeline eas-
ily visible so that a member of the team can take immediate action to remove it.

—Tapabrata “Topo” Pal, Director, Next Generation Infrastructure,
Capital One (Pal, 2015)

Figure 4-16: hygieia, from Capital One

There is no one better to introduce the value of providing a single dashboard
to present and visualize the metrics from the end-to-end delivery pipeline than
(my friend) “Topo” Pal from Capital One. Reading the introduction of Hygieia
(and the more complete version on the original web page), you can see the core

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 159

business value points that are delivered by having such a dashboard enabling
continuous feedback of delivery pipeline metrics and analytics:

 ■ A continuous feedback loop is essential for DevOps. Every practitioner
in the delivery pipeline should have visibility into metrics related to the
delivery pipeline, providing them feedback on their work, and down-
stream work related to their artifacts.

 ■ A single dashboard to visualize the entire delivery pipeline is the ideal
solution. The dashboard needs to be able to consume metrics and data
from every tool in the delivery pipeline.

 ■ The dashboard should continuously expose bottlenecks. If the goal of a value
stream mapping exercise is to find pre-existing bottlenecks in the delivery
pipeline, the dashboard then acts as a real-time bottleneck detection system.

 ■ Such a dashboard should be easy to configure and use. Setting up and
configuring the dashboard should not introduce a new bottleneck in
the delivery pipeline. Furthermore, the metrics and analytics should
be easily consumable, as visual representations.

Hygieia is an open source project started by Capital One to create a dash-
board to visualize the delivery pipeline metrics in one place. Figure 4-16 and
4-17 show screenshots of the Hygieia dashboards. Several vendors, from IBM to
HP to XebiaLabs to Jenkins, have contributed code to Hygieia, allowing metrics
from their tools to be exposed in the dashboard (Capital One GitHub, 2015).

Figure 4-17: hygieia—pipeline view

DevOps Adoption Playbook160

Continuous Improvement

Today, in sports, what you are is what you make yourself into. Innate athletic ability
matters, but it’s taken to be the base from which you have to ascend. Training efforts
that forty years ago would have seemed unimaginably sophisticated and obsessive
are now what it takes to stay in the game. Athletes don’t merely work harder than
they once did. As Mark McClusky documents in his fascinating new book, Faster,
Higher, Stronger [Hudson Street], they also work smarter, using science and
technology to enhance the way they train and perform. It isn’t enough to eat right
and put in the hours.

—Surowiecki, 2014

The ’72 Miami Dolphins notwithstanding, records are meant to be broken.
What Surowiecki is implying is that, in sports, the players are getting better
every season. They are getting stronger, training more, using better equipment,
receiving better coaching, and leveraging better technology to continuously
learn what and how to improve. They are striving to be better not only than
those who came before them, or than their current competition, but than they
themselves were the day before.

A DevOps adoption effort needs to introduce this culture of continuous
improvement in the project teams.

 ■ How can they improve the application or service of which they just
delivered the latest version?

 ■ How can they improve the infrastructure and environments on which
they just delivered the application or service?

 ■ How can they be better than they were in the last sprint so they
can deliver a higher-quality product, at lower cost, faster, and more
efficiently?

This improvement can only come in the same manner as it comes for
Olympic-level or world-class players: by instrumenting every aspect of
their training routine, by providing visibility into detailed and myriad
metrics about productivity and performance, and by looking for where
they can improve, even ever so slightly. After all, even a thousandth of
a second can make the difference between a gold medal or not in some
Olympic sports.

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 161

Knowing where to invest when it comes to continuous improvement is also
critical. Just like in swimming, shaving off a thousandth of a second may not
make a significant enough difference to win a higher medal; a competitor
needs to shave off in the hundreds of a second. In the same way, focusing and
investing the Dev-test cycle to improve the velocity will not have a significant
impact if the real bottlenecks are in the project change approval or requirement
elicitation processes. Similarly, knowing what to focus on when improving
the application and environments delivered is essential to ensuring you are
focusing on and investing in the right areas. An efficient and complete metrics
regime enables continuous monitoring and feedback of the entire delivery
pipeline—from project inception to maintenance. It also captures the KPIs
for the application delivery processes for the application delivery pipeline.

play: release management

You don’t show up on game day and expect to be great. Greatness happens in
practice. You have to expect things of yourself before you can do them.

—Michael Jordan, basketball legend

thiS iS why there are SO many tieS in Swimming

In a 50-meter Olympic pool, at the current men’s world record 50m pace, a
thousandth-of-a-second constitutes 2.39 millimeters of travel. FINA pool
dimension regulations allow a tolerance of 3 centimeters in each lane, more
than ten times that amount. Could you time swimmers to a thousandth-
of-a-second? Sure, but you couldn’t guarantee the winning swimmer didn’t
have a thousandth-of-a-second-shorter course to swim. (Attempting to con-
struct a concrete pool to any tighter a tolerance is nearly impossible; the
effective length of a pool can change depending on the ambient tempera-
ture, the water temperature, and even whether or not there are people in
the pool itself.)

Sports that subject athletes to an identical course—bobsled, for
 example—can use thousandths because this question doesn’t matter. Speed
 skating uses thousandths, though given how start commands are issued in
that sport and the incredibly slow speed of sound, maybe they shouldn’t.

 —Burke, 2016

DevOps Adoption Playbook162

Release day is game day. Everything the team has done and worked hard for
culminates in the software being released to production. Only then do users
start using the application to get business value.

This is old-school thinking. It is big-batch, full-application-release think-
ing. By adopting DevOps practices, release day should not be an event that
lasts long or is significant enough because it happens only once in a project’s
release cycle. With DevOps, release to production should be as simple as
switching configuration settings to expose a new version of the application
that has already been delivered to a pre-production or even the production
environment or switching a feature flag in the application to start exposing
new feature sets in an application already delivered. The delivery processes
should also be trivial, as they have delivered small batches of the application
though the delivery pipeline to various environments dozens, if not hundreds,
of times. The release to users may remain an infrequent event, but delivery to
production (or pre-production) should be continuous.

The Release Management Process
Let’s step back and look at why organizations have such cumbersome and
complex release management processes. It all boils down to managing the
quality and success of a release.

What is the definition of a release? A release is a collection of new or changed
configuration items or components that are tested and introduced into pro-
duction together. It may include a combination of application software, sys-
tem software, and hardware together with associated documentation. Because
various versions of these components may be coming together from various
teams, they need to go through formal Quality Assurance and governance steps
that have well-defined gates in order to ensure that the right versions of the
right components, which have passed the right QA checks and are integrated
properly, are successfully deployed. Release management processes may thus
be fairly rigorous, depending upon the mission-critical nature of the applica-
tion and the regulatory and compliance requirements they may operate under.
The release management process to release a payment processing system, for
example, needs to be more rigorous than that to release the next version of a
virtual monster-hunting game (no matter how mission-critical your teenager
may feel the virtual monster-hunting game is).

Release management becomes more complex when it involves multiple
components and services, from multiple application delivery pipelines. This
was introduced earlier on as Multi-Speed IT. Here the coordination of the flow

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 163

of artifacts needs to be coordinated across these multiple delivery pipelines.
The dependencies between the various components and services need to be
well understood and documented to fully understand the impact of changes to
the components and services and that of any delays in their release schedules.

 ■ Can components be released independently, or do they need to be
released together?

 ■ What dependencies are there that require components or services to
be released in a particular order?

 ■ Are new versions of some components or services compatible with older
versions of others that may not yet have been updated?

 ■ What quality gates are there for each component?
 ■ Do some components and services have special QA or security/

compliance requirements?
 ■ Are there certain high-severity defects that can block a component from

being released? And conversely, are there low-impact defects that do
not block a release?

 ■ How are changes to release plans handled?
 ■ How is version management of assets and artifacts dealt with in order

to ensure that the right versions of components and services are being
released?

 ■ How are deployment failures, which stop a release from being com-
pleted, triaged, and addressed?

 ■ How is the inventory of releases managed and documented?
 ■ How are rollbacks of release handled?
 ■ What are the audit requirements for a release? What level of release

records need to be maintained, and for how long?
 ■ What are the criteria to mark a release completed?
 ■ Is there a warranty period for a release, during which the release is not

marked as closed?

These and many more questions go into a comprehensive release manage-
ment process.

Given this level of complexity in the requirements of a release plan, it is essen-
tial that the processes behind them be automated and have visual dashboards to
provide visibility into the process and any issues and bottlenecks that may occur
during a release process. IBM UrbanCode Release (shown in Figure 4-18) and
XebiaLabs XL Release are two good examples of such release management tools.

DevOps Adoption Playbook164

Continuous Delivery for non-continuous Release Cycles
While the formal releases may remain at a fixed cadence—monthly, quar-
terly, yearly, and so on—DevOps practices can still be employed to have
continuous delivery to pre-production environments. All the release man-
agement processes are now applied to get the components and services to
the pre-production environments. During the continuous delivery to pre-
production, the release management processes may remain just as rigor-
ous as before, but the automation makes them faster. Furthermore, the fact
that small batches are being deployed to the pre-production environments,
at a high frequency, reduces the time required to go through all the gates
and makes the process less cumbersome. At the time of actual release to
the users, the release becomes an almost trivial set of steps to deploy from
the pre-production to production environments. Some organizations have
pre-production environments that are actually identical to production. At
the time of release, they just switch the network (Domain Name Server or
DNS) settings to swap the two environments, making pre-production the
new production. The old production is rebuilt as the next pre-production
environment, for the next release.

Figure 4-18: release management with multiple delivery pipelines in iBm
urbanCode release

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 165

Specializing Core plays
It is not uncommon for swimmers to participate in multiple events in swim
meets—Michael Phelps alone has won medals in as many as eight separate
events each in multiple Olympics. In swimming, there are multiple types of
events that not only vary by distance (100m, 200m, and so on) but also by the
swimming stroke (freestyle, breaststroke, backstroke, butterfly, and medley,
which includes all four). While the basics of swimming remain the same, the
swimmers need to practice differently to prepare for each race. In essence,
they take their core plays and tweak or enhance them for each race, given its
distance and stroke type.

The next few plays are technology-specific. The plays presented in the book
so far have been generic, technology-agnostic plays that can and should be
adopted by any organization undergoing a DevOps transformation. These are
the core plays that need to be included in any DevOps transformation playbook.
However, the nuances of certain technologies require that specific tweaks or
enhancements be made to certain plays when adopting them, for projects and
teams working in such technology platforms. The rest of this chapter presents
these technology-specific plays.

play: DevOps for mobile
There is really no such thing as a separate DevOps for mobile. DevOps as an
approach works for all applications and components, from front-end mobile
apps, to middleware, to back-end server components and data stores. The goal
is to apply the practices and principles of DevOps across all Dev and Ops teams
in the enterprise to enable continuous delivery of all of these components,
including mobile apps.

Mobile apps do have specific needs and challenges that must be addressed.
In this play, I will present best practices for adopting DevOps capabili-
ties, as applied for mobile app delivery, to address these mobile-specific
needs. The goal of these best practices is to bring mobile app development,
Quality Assurance, and operational practices in line with other enterprise
applications adopting DevOps. Adopting these best practices thus allows
enterprises to adopt DevOps across their mobile development teams,
deliver higher-quality mobile apps, and enable continuous improvement
and innovation.

DevOps Adoption Playbook166

Mobile-Specific Devops Challenges
While the basic principles of DevOps are the same for enterprise and mobile
apps, mobile apps do present specific challenges to DevOps. These challenges
include the following (Williamson, 2014):

 ■ Multi-platform support. Most mobile apps target multiple devices, which
means dealing with various technical specifications, OS versions, and
form factors. Android is well known for being fragmented, as each device
vendor has forked the operating system for its own devices. (Examples
include Android for Nexus, Android for Kindle Fire, and Android for
Nook.) Other players like BlackBerry, Windows, Ubuntu, and Firefox
are now further fragmenting the mobile OS market. Even with iOS,
which was once standard across all Apple mobile devices, today there
are multiple variants. An iOS application needs to support different ver-
sions of iOS: the iPhone 4S and below form factors; the regular iPhone
and Plus form factors; and the iPad, iPad Pro, and iPad mini form factors.

 ■ Mobile apps as an enterprise front end. Mobile apps, especially enterprise
business-to-consumer (B2C) or business-to-employee (B2E) mobile
apps, typically have little business logic code that runs on the mobile
device itself. Instead, a B2C or B2E mobile app serves as a front end
to multiple enterprise applications and services delivering business
functions for the organization, such as transaction processing systems,
employee HR systems, or customer acquisition systems. Figure 4-19
highlights such an app with limited business logic in the app itself.
The example is that of the popular LinkedIn mobile app (LinkedIn,
Engineering Blog, 2011).

Screen-based REST API

iOS
JS/HTML +

native

Android
native

Mobile Web
JS/HTML

Other
wrap

JS/HTML

Domain REST API
LinkedIn platform

Mobile server (node.js + MongoDB)

Figure 4-19: linkedin mobile app architecture

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 167

The LinkedIn mobile app is really a front end to the back-end
LinkedIn platform, which delivers the core business services of
LinkedIn to its users. The mobile app, which is delivered to multiple
platforms as a native or hybrid app, needs to be developed and deliv-
ered in conjunction with the back-end LinkedIn platform services.
As discussed before, for DevOps adoption the challenge is to think
holistically of all of the applications and services in the enterprise that
deliver functionality and capabilities to the mobile app and coordinate
their build and release processes and cycles.

 ■ Speed of delivery and cycle time. Because of the strong business motiva-
tion to deliver mobile applications to market quickly, get feedback, and
iterate rapidly, mobile development projects typically have extremely
aggressive timelines. An inception-to-delivery period of a few months,
or even weeks, is common. The pressure to deliver mobile apps quickly
results in the adoption of Agile development methods for successful
mobile projects. It results in the need for continuous integration and
continuous delivery, with extremely short cycle times.

For CI and CD to work with mobile app delivery, application changes
delivered by developers need to be integrated and built for all of the
targeted mobile platforms. If the mobile application is a hybrid or
native implementation, several different builds of the application need
to be triggered, in parallel, each time a change set for the application
is delivered by a developer. The build setup and configuration for each
supported mobile environment is different from the others. To speed
this up, a small farm of build servers may need to be provisioned and
made available to handle these multiple mobile target operating system
CI builds.

 ■ The app store. Typically, a mobile app cannot be directly deployed to
a device. It has to go through an app store. Apple introduced this app
distribution model and locked its devices to prevent direct installation
of apps by app developers or vendors. All mobile platform vendors have
followed suit. The app store adds an additional asynchronous step to
the deployment process because developers are unable to deploy app
updates on demand. Even for critical bug fixes, new app versions go
through an app store submission-and-review process. Continuous deliv-
ery becomes submit and wait.

 ■ “Pull” not “push” deployment. Traditional deployment operates on a push
model whereby operations can push out a new version of an application

DevOps Adoption Playbook168

on demand, be it a web application or any other server-based applica-
tion. The process for updating mobile apps is a pull process, however,
where, in most cases, users must choose to update their apps them-
selves. Mobile application developers have little control over which
version of the app an established user keeps on his or her device.
From a DevOps perspective, this means that the deployed back-end
services that an app interacts with must provide continuous support
for multiple—current and previous—releases of the mobile app.

 ■ Long-term impact of negative ratings. Nothing is more hurtful to a brand
than an app with a one-star rating, particularly when that rating is
broadcast through the medium of an app store. Unsatisfied users of
consumer mobile apps can become public and visible quickly, regard-
less of whether the app is purchased or free. While complaints about
issues with a website are communicated to a technical support desk,
complaints about mobile apps are broadcasted via the app store for
everyone to see. Mobile apps must undergo extensive functional, usabil-
ity, and performance testing to ensure their quality. User experience
begins to trump functionality.

Devops Plays applied to Mobile app Delivery
Based on the challenges that are specific to mobile apps, the following DevOps
plays have been tweaked and enhanced for mobile apps.

Continuous Integration and Continuous Delivery How CI and CD
are implemented is impacted by the very nature of Mobile App development
and delivery.

 ■ End-to-end traceability across all assets: I discussed the value of traceability
across all artifacts earlier in this chapter. A mobile app development team
must ensure end-to-end traceability across all development assets, such
as code, configurations, scripts, infrastructure as code, test scripts, and
design documents. It is also imperative that traceability not be limited to
mobile development assets; it must extend to enterprise applications and
services that mobile apps integrate with, connect to, or access.

 ■ Continuous integration: Continuous integration should not only be
performed for the mobile app components but also periodically with
the mobile back-end and server-side components and services that are
accessed by the mobile app under development.

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 169

 ■ Build server farms: To enable continuous integration for mobile
apps, the development teams may share central build and inte-
gration servers for the mobile app code that serves all mobile
platforms that are targeted. Setting up build server farms auto-
mating the build and deployment process ensures fast and reli-
able continuous integration builds that can be performed in
parallel for all supported mobile platforms and targeted form
factors.

 ■ Separate integration streams by SDK: Developers should main-
tain separate build and integration areas for each native mobile
OS SDK version that is supported. Fragmentation in the mobile
device space extends beyond just the four major mobile operat-
ing systems of iOS, Android, BlackBerry, and Windows; each of
these operating systems is also internally fragmented. Several
new mobile platforms are also emerging, including ones from
Ubuntu, Chrome, and Firefox. As a result, mobile app develop-
ers must write multiple app variants to support each targeted
platform and its variants, even if they are targeting just one
platform. Every mobile app requires multiple versions of its SDK.

To ensure separation of code and the specific capabilities
of each targeted platform, developers must maintain separate
streams of development and integration for each platform-
specific version of a mobile app.

 ■ Automated deployments: Mobile developers are accustomed to using
an IDE to manually run builds and deploy the app to the appropriate
device. As the complexity and number of builds increases, developers
should set up automated builds and deployments. This not only ensures
a higher quality of builds and deployments, but it also ensures that each
build can be reproduced and deployed at any time and by any developer
or tester, on demand.

Testing and Monitoring Testing and monitoring become exponentially
complex based on the myriad mobile platforms and devices, each with their
own form factors, that you may need to support.

 ■ Automated testing on simulated and physical devices: Test automation
is an area where mobile app development lagged behind enterprise
apps. Most mobile developers test extensively on a simulator but not

DevOps Adoption Playbook170

on physical devices. Even the testing done on a simulator is mostly
manual. Given the speed of development and the inherently agile nature
of mobile development, automated functional regression testing is the
only real way to ensure quality. Due to the myriad of platforms and
form factors that are supported, it is not possible to manually do enough
testing. The solution is to test all apps with automated testing tools, on
simulators that are provided by the SDKs and then also on all actual
supported physical devices. Service providers are available to provide
multi-device testing.

 ■ Test virtualization: This approach allows you to virtualize and simulate
mobile back-end services that are not available during mobile app test-
ing. Mobile apps follow a rapid development process, which can result in
many more releases when compared to back-end enterprise applications
and services. Such rapid development can keep mobile apps technically
ahead of the curve of the back-end applications and services, meaning
that they have newer features that aren’t yet supported by back-end
enterprise applications and services. As mentioned earlier, even when
back-end services are available, they might cost money or resources to
test against. Development teams can solve this problem by virtualizing
(simulating) back-end services. The entire ecosystem of applications,
services, and data stores that the mobile app needs to interact with can
be made available as virtual instances, simulating the behavior of the
actual capabilities the mobile app needs to interact with. This arrange-
ment allows for rapid testing of the mobile app and its interactions.
It also saves hardware resources that would be needed to run actual
instances of these services and applications for testing purposes.

 ■ Application and system performance monitoring: Mobile app developers
face no bigger challenge than an app that performs well in the test
environment but fails in the wild. Unreliable network conditions, low
memory, low power, and data loss are some underlying causes of poor
mobile application performance. Not all of these conditions can be
predicted and tested in a lab, so it is imperative that developers enable
continuous performance monitoring as apps are used. Such monitoring
should be done to monitor the entire stack—not just the mobile app
but also the applications and systems that are delivering the mobile
back-end services.

 ■ User sentiment feedback: The ultimate failure is when a mobile app does
not function or perform while in a user’s hands out in the field. Adding

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 171

capabilities to the app that captures context information in the case of
issues, including location data and device characteristics, can provide
the developer with sufficient data to find the root cause of the issue and
correct it. Embedded crash capture and analysis logic is an essential
component of mobile apps. Newer services like IBM Mobile Quality
Assurance can capture user sentiment, allowing for not just capture of
app crashes but also the user’s feedback when an app does not function
or perform as desired, directly from within the app.

Mobile App Delivery Mobile apps are at the forefront of continuous deliv-
ery. It is not uncommon to look at one’s mobile device and find tens of apps
that have new updates on a weekly basis. However, delivering mobile apps is
not as straightforward as delivering web apps or SaaS offerings.

 ■ Centralized governance for mobile provisioning profiles, certificates, and
API keys: Whether to submit an app to an app store or to use an API pro-
vided by an internal or external application, a developer or organization
identifies the authenticity and ownership of an app via a vendor-issued
provisioning or profile key. These keys serve as the authorization pass
to the store or API. Typically, individual developers get their own keys
that they use for development purposes. However, when the final app
is released, steps need to be taken to remove all these personal keys
and replace them with the official organizational keys. There have been
instances where organizations have had major issues, and even had
to withdraw apps, either because official apps were released without
replacing personal developer keys with organizational keys or because
the organizational keys or profiles were released publicly, or for both
reasons.

The organizational keys and profiles need to be protected and only
used for official app releases. Mobile governance processes for key and
profile management must be well defined and tightly controlled. Above
all, restricting access to organizational keys and profiles is critical, as
it is both a security and a privacy issue that requires strict governance.

 ■ Using a virtual app store to test end-user device app provisioning: A mobile
app can only be provisioned to a mobile device via a vendor’s app
store. Usually the app goes through a manual approval process before
it gets into the app store. Once it’s in the store, a user needs to get the
app, which is then pushed to her device. To test this entire process,

DevOps Adoption Playbook172

development teams can use a private development app store. These
virtual app stores simulate the behavior of a real app store, enabling
developers to effectively test the process of submitting an app and pro-
visioning it to a device.

 ■ Capturing user feedback: Mobile apps have a unique feedback mecha-
nism via app stores that allows users to provide ratings and written
feedback about them. A well-liked app is likely to receive a four- or
five-star rating. A less popular app usually receives a one- or two-star
rating, possibly accompanied by negative feedback. This direct feed-
back from users for mobile apps is not available as a formal central-
ized mechanism for any other platform. Developers typically find out
about problems with traditional apps only if a user calls tech support
or leaves a comment on a forum that is monitored by the develop-
ers. Mobile development teams should therefore closely monitor app
store feedback and ratings and incorporate the feedback into future
user stories, enhancements, and software improvements. Making the
most of this valuable feedback is imperative to continuously improv-
ing mobile apps.

Culture and Teams In most organizations, mobile app teams have tra-
ditionally been small teams with their own development and delivery tools
and practices.

 ■ Collaboration across mobile and back-end teams: It is not uncommon for
the mobile app development teams to be separate groups within an
organization—be they vendors or employees. For DevOps adoption,
it is essential to include mobile development teams when adopting
DevOps across the organization, even if the mobile team is a small
part of the organization or follows a different software development
process. Mobile apps that interact directly with enterprise applications
and services need to be first-class citizens in the DevOps lifecycle. As
new features are added to the enterprise application or service, the
teams can seamlessly integrate them into the mobile app.

 ■ Learning agility from mobile app teams: It is also common to see these
mobile development teams be extremely agile with rapid develop-
ment and delivery capabilities. Their skills and agile processes can
actually be leveraged by the rest of the organization, adding signifi-
cant value.

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 173

play: DevOps for mainframe
The world’s businesses still run on the mainframe. For the past 50-plus years,
even since the first distributed systems started gaining popularity, the pundits
have been predicting the demise of the mainframe. However, it is still growing
strong, despite the emergence of the cloud and mobile computing. Here are
some myth busters about the mainframe—specifically IBM System z—that,
while being a few years old, still hold true (Sun, 2013):

 ■ Ninety-six of the world’s top 100 banks, 23 of the top 25 U.S. retailers,
and 9 out of 10 of the world’s largest insurance companies run System z.

 ■ Seventy-one percent of global Fortune 500 companies are System z
clients.

 ■ Nine out of the top 10 global life and health insurance providers process
their high-volume transactions on a System z mainframe.

 ■ Mainframes process roughly 30 billion business transactions per day,
including most major credit card transactions and stock trades, money
transfers, manufacturing processes, and ERP systems.

Mainframes therefore deserve a section in this book. Moreover, they do have
some nuances that require that the DevOps plays be enhanced or tweaked for
adoption on the mainframe.

Organizations that have significant workloads running on the mainframe
share a few common patterns of concern:

 ■ The processes and tools used by mainframe teams have not kept pace
with those for teams delivering applications on distributed or cloud-
hosted systems.

 ■ Most mainframe-hosted workloads have been in production for a long
time—decades in some cases—with little new development being done.
While these systems are extremely stable and well understood, they
have legacy architectures and are difficult to transform to modern archi-
tectures for better consumption.

 ■ The total cost of running and maintaining systems on the mainframe is
fairly significant. This is due to their cost models and because the tools
and processes have not been transformed to become more efficient.

 ■ While it is politically incorrect to say so, the reality is that practitio-
ners who work on the mainframe are aging and retiring. It is becom-
ing more and more difficult for organizations to find replacements

DevOps Adoption Playbook174

as younger engineers are not familiar with the legacy processes and
tools or are unwilling to work with tools that do not have modern
user interfaces.

At the end of the day, most mainframe systems are the ones deliver-
ing the core business services. They exemplify the core in industrialized
core. However, they might not be very industrialized. Their old tools and
processes, non-modern architectures, and lack of lean delivery pipelines
result in these systems being unable to deliver changes at speed. These
systems can thus become a drag on the organization’s ability to innovate
at speed. It does not matter how fast an innovation edge application can be
delivered. If it is dependent on a back-end service that runs on the main-
frame and will not be updated for another six weeks, the new app cannot
be released till then.

Also, from an investment perspective, if the greatest inefficiency is in the
delivery capability of applications on the mainframe, then making these sys-
tems more efficient will have the greatest impact on freeing up resources—
money and human—which can then be invested into innovation.

Optimization needs to come first in order to allow innovation to even hap-
pen and to happen unhindered.

Devops Plays applied to the Mainframe
Based on the challenges that are specific to application delivery on the main-
frame, the following DevOps plays have been tweaked and enhanced for the
mainframe (Radcliffe, 2014).

 ■ Maintain a single-source repository: With any multi-platform develop-
ment effort, using a common, cross-platform, single-source repository
is critical to enable CI. However, it is not uncommon to see mainframe
teams using legacy source code repositories that are different from,
and disconnected from, those used by other non-mainframe teams.
If such a singular repository is not implemented across platforms,
the System z teams end up being left isolated and not able to partici-
pate in continuous integration practices. Integration with any work
conducted on the mainframe becomes an after-effort, waterfall-style
integration.

This transition to a modern source-code repository represents a sig-
nificant change for mainframe development teams that may have been

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 175

using the same capability for years. However, a single source code man-
agement (SCM) tool is critical to allow the management of all artifacts,
help break down the silos, and remove a key bottleneck.

 ■ Ensure that everyone commits to the mainline every day: CI requires having
every developer, across all components and all development environ-
ments, commit their code to the integration streams every day to help
ensure that integrations remain as continuous as possible. For System
z/OS development today, many users work independently on their code
changes until the final audit, which is when they realize their work is
impacted by the work of other developers. This can lead to delays in
releasing functions or to last-minute changes that have not been prop-
erly tested being deployed into production. Regular integration of code
can help ensure that these dependencies are identified sooner so the
development team can handle them in a timely manner and without
time constraints.

 ■ Automate the build: Automating the build is what makes continuous
integration continuous. For System z builds, automation can become a
challenge, as the availability of the System z environment and the cost
of accessing it can both become issues. Availability certainly becomes
an issue during production and business operation hours.

 ■ Test automation: Just as builds need to be automated, so does the testing.
The goal of continuous integration is not only to integrate the work of
teams but also to see if the application or system being built is func-
tioning and performing as expected. As described earlier, continuous
testing requires that the automation include the capability to build the
software if needed, provision the test server, provision the test environ-
ment, deploy the built software to the test server, set up the test data,
and run the right test scripts.

All of this can be a particular challenge for System z/OS develop-
ment, but it must be addressed. The requirement to have the envi-
ronments to do the build, deploy it, and do the automated testing at
any time helps improve the quality of the final code. This requires
availability of system resources, the willingness to run large numbers
of automated tests on a regular basis, and the development of the
automated tests.

 ■ Keep the build fast: Fast builds are essential, as virtually noth-
ing impedes continuous integration more than a build that takes
extremely long to run. System z/OS builds are generally fast due to

DevOps Adoption Playbook176

the standard practice of building only changed files. However, these
builds do need to be coordinated with builds on other platforms,
and scheduling the appropriate time when System z/OS resources are
available can be an issue.

 ■ Test in production-like environments: Testing in an environment that does
not accurately represent the production system leaves a lot of risk in
the system. It is not always possible, however, to create a clone of an
entire System z or non-System z environment just for testing. It is even
harder to create a clone environment with other workloads running on
it. For systems hosted on System z, the cost of maintaining such test
environments can become a major issue. Generally, a limited number of
development and test LPARs must be shared across teams. In addition,
many organizations carefully control the MIPS utilization of their test
teams in order to develop capacity for production.

Organizations looking to limit utilization and maximize availability
of System z test environments can utilize tooling that allows for non-
production instances of System z/OS to run on distributed systems
for development and testing. One example of such a solution is IBM
Rational Development and Test Environment (RD&T) for System z. It
provides non-production System z/OS environments such as develop-
ment or Quality Assurance on Intel-based Linux systems. This environ-
ment includes a System z/OS hardware emulation that enables running
the true System z/OS platform, with necessary middleware. In such a
scenario, the continuous delivery process would deliver the application
to these Dev-test environments and eventually to production back on
System z. Other than providing easy access to multiple production-
like environments, such a solution to offload Dev-test environments
from the mainframe also frees the System z mainframes exclusively
for production use.

 ■ Adopt deployment automation: Continuous integration naturally leads to
the concept and practice of continuous delivery—the process of auto-
mating the deployment of software to test, system test, staging, and
production environments.

Automated deployments are common in System z/OS environ-
ments because SCM systems generally include build and deployment.
However, most projects do not have enough System z/OS resources for
each team to deploy into a test environment at all times. Deployments

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 177

also need to be coordinated with the distributed side of the infrastruc-
ture, which can present a challenge due to the lack of common tooling.
An effective practice to meet these needs is that of continuous release
and deployment.

For System z applications, there are two common mechanisms or
paths to continuous delivery:

 1. For organizations with a mature set of deployment tools and
practices in place, deployment to the target logical partition
(LPAR) may be carried out leveraging a legacy configuration
management tool. While limited in their ability to deliver the
full capability of continuous delivery, these tools can automate
deployment to z/OS systems.

 2. Alternatively, an organization can utilize a specialized deploy-
ment automation tool that has full support for multi-platform
deployments including System z/OS. Deployment automation
tools, such as IBM UrbanCode Deploy, have a System z/OS agent
that can install natively on the target LPARs to enable continuous
delivery.

 ■ Collaborate and communicate: This is a culture-focused play, as presented
earlier. Just like DevOps for mobile adoption, it is essential to include
the mainframe development teams when adopting DevOps across the
organization, even if the mainframe teams may still utilize different
tools and process. While they modernize the tools and practices, they
should be included in the DevOps team and also in the organizational
transformation to become leaner and more efficient. If the organization
does have a significant percentage of their workloads and applications
running on the mainframe, doing so will result in a significant overall
return on investment of the DevOps transformation.

play: DevOps for internet of things
One of the most significant shifts in how technology has penetrated the daily
lives of humans—our homes, our transports, our workplace, our factories,
our health—has been the advent of smart or connected devices, collectively
known as the Internet of Things (IoT). Technology has existed in all these
areas for decades, but the advent of IoT has allowed the devices we use to

DevOps Adoption Playbook178

be connected, in real time, to all other devices, and to back-end services via
the Internet. It is no longer just our smartphones and tablets that can com-
municate with, and deliver services from, service providers; it is our ther-
mostats, refrigerators, weighing scales, cars and trucks, commercial HVAC
systems, security systems, watches, exercise tracking devices, televisions,
and even street corners.

While all these devices have always had software on them, the software
was embedded in the device as firmware, at the time of manufacturing.
Updating to a new version meant replacing a physical component—a chip,
a board, or the entire device—with a new version of the component that had
the new software (firmware) version. Updating in place, what is referred to
as over the air (OTA), was not an option because the devices had no con-
nectivity nor were they designed to be updated when in the possession of
the user. Firmware, even when it could be updated, was updated by flashing
it on to the device chip that ran it, something that could be done only with
specialized equipment.

The application delivery process of the devices had two separate and
distinct cycles. During the development stage of such devices, both the
hardware and software are being developed, typically disconnected from
each other. The design and manufacturing of the physical hardware, and
development of the firmware that runs on this hardware both need to be
synchronized just before the release of the devices. The devices, of course,
cannot be delivered without the firmware running on them, and the software
development cannot be finalized if the hardware engineering is still evolving
and iterating. As the device hardware design approaches completion, the
firmware team can start finalizing the software and testing it on a prototype
or a simulator, if a real device is not yet available. Once the device becomes
available, there is a handoff of the firmware to the engineering team that
owns the device, and they then own testing of the final device—hardware
and firmware. They iterate with the software development teams to address
changes and defects, till release. The diagram in Figure 4-20 refers to these
teams as the software development lifecycle (SDLC) and product lifecycle
management (PLM) teams, respectively—terms commonly used by organi-
zations. Once delivered, the next challenge is related to the updating of the
firmware to newer versions. As I’ve mentioned, in pre-IoT devices, the only
mechanism was to replace all or part of the hardware components that had
the firmware embedded.

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 179

With IoT creating a surge in such devices, DevOps is being adopted by
organizations delivering IoT devices to make their entire delivery process
leaner and more agile. Here are some key DevOps practices that need to be
tweaked for IoT when adopted:

 ■ Continuous integration and testing. These progress as in traditional soft-
ware delivery. However, the availability of simulators or device proto-
types that resemble the final device as much as possible (production-like
system) is essential. The development cycles of the firmware and hard-
ware need to be better synchronized.

 ■ Continuous delivery challenges. Once in production, even connected
devices may not be in a state to be updated when an update is made
available. They may not have continuous connectivity to the network—
for example, devices that are connected only when docked or only when
connected to another device is brought into their proximity. This behav-
ior may necessitate that firmware updates be done only when the device
is idle and not in a state that needs to be maintained (for example, a
suspended state). Furthermore, they may only have a “pull” mode of
receiving updates, rather than a “push” mode, which necessitates that
the user initiate the update process.

 ■ Hardware design for CD. Traditionally, hardware for devices was not
designed to have its firmware continuously updated like a mobile app.

Dev Environment
Continuous Integration

Unit Test
Functional

Test

Performance
Test

Acceptance
Test

Build

Build

Build
Continuous Monitoring

Test Environment Stage Environment

Continuous Testing

Continuous Delivery

Handoff to
Engineering

SDLC PLM

Manufacturing

Figure 4-20: application delivery handoff to engineering

DevOps Adoption Playbook180

If the device manufacturer intends to have a CD mechanism in place
to continuously update the firmware of their devices once they are
deployed into production, then the hardware architecture needs to
be designed for such updates. There should be a way to initiate the
update without removing the device from where it is installed, and
the update should not require any specialized equipment or processes.
The device architecture should ideally be expandable, where new
features can be activated or introduced just by a software update or by
turning on a software feature that is already installed but only turned
on for certain paying customers or in certain special situations. It is
not uncommon for such devices to have two layers of firmware: a core
operational firmware (an OS), which operates the device and is infre-
quently updated; and the app, which provides specific features and
services to the user and is more frequently updated.

 ■ Teaming and culture. The alignment between the hardware and firm-
ware teams during the development stage of the device is essential.
The hardware and software designs—architecture, requirements, and
delivery cycles—are mutually dependent, requiring that the two teams
(SDLC and PLM) operate in sync. The Ops in DevOps for IoT is, after
all, the device hardware team.

play: DevOps for Big Data and analytics
Big data and analytics solutions are an entire category of applications
and services that are driving demand for new, faster, and more frequent
approaches to software delivery. In the past, basic tasks such as deliver-
ing a simple code change could take four to six weeks; yet waiting weeks
or even months to get an update to clients is no longer acceptable. The
traditional lifecycle for delivering new or enhanced big data and analytics
solutions took months or even years as features and functions were col-
lectively designed, developed, tested, and deployed. Increasingly, devel-
opment organizations are looking toward DevOps for ways to implement
continuous delivery as a means to improve business agility, speed up deliv-
ery, capitalize on new marketplace opportunities, and respond to chang-
ing landscapes. The goal of continuous delivery is to constantly design,
test, and deploy incremental enhancements in production to more rapidly
provide value to customers as well as to roll back those changes if any
problems are detected.

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 181

Adopting DevOps plays results in these big data and analytics solutions
being delivered in a more efficient and effective manner, with continuous
process improvement, while ensuring that the changes and enhancements to
the software are based on real customer feedback.

Figure 4-21 shows a big data and analytics reference architecture, highlight-
ing the complexity of delivering such applications and services. The archi-
tecture describes a set of components that facilitate data ingestion, staging,
exploration, analytics, and reporting to achieve desired business outcomes
balancing requirements related to quality, relevance, and flexibility.

analytics Solutions unified Method
Fortunately, unlike mainframe development, the big data and analytics space is
not alien to Agile practices. IBM Analytics Solutions Unified Method (ASUM)
(ASUM, 2016), for example, is a step-by-step guide to conducting a complete
implementation lifecycle for big data and analytics solutions. ASUM uses a
hybrid of Agile and traditional implementation principles to achieve your
solution objectives and provide an optimal result to your organization. These
principles are listed here, and their alignment with DevOps plays presented
in this chapter is evident, making DevOps adoption easier for projects fol-
lowing ASUM:

 ■ The project is assessed for the application of Agile principles.
 ■ The project is scoped, and initial business requirements are gathered.

Actionable insight

Reporting, analysis,
content analytics

Data sources Real-time analytics

Information integration & governance

SYSTEMS—SECURITY—STORAGE

Information
ingestion and
operational
information

Exploration,
landing and

archive

Enterprise
warehouse

Data mart

Analytic
appliances

Enhanced
applications

Machine and
sensor data

Customer
experience

Cognitive

Decision
management

Predictive analytics
and modeling

Discovery and
exploration

New business
models

Financial
performance

Risk

Operations
and fraud

IT economics

Image and video

Enterprise
content

Transaction and
application data

Social data

Third-party data

Figure 4-21: a big data and analytics reference architecture

DevOps Adoption Playbook182

 ■ Both business and IT personnel form an integral part of the project
implementation team.

 ■ Requirements are clarified and fine-tuned through a number of iterative
prototyping sprints. Based on the number and priority of requirements,
timeline, and available resources, a staged implementation approach is
adopted to achieve the objectives.

 ■ Prototyping results are then compared to total requirements to assess
achievements and determine further iterations.

 ■ Iterative and incremental development is used to finalize configuration
and build.

 ■ Following adequate testing performed throughout the lifecycle of the
project, the first stage of the solution goes live.

 ■ Remaining stages of the project follow the same path of prototyping
sprints and iterative and incremental development as the first stage.

ASUM follows five fully defined phases, as shown in Figure 4-22, with an
umbrella area of project management.

Figure 4-22: analytics Solutions unified
method (aSum) phases

Design

Analyze

Deploy

Configure
& Build

Operate
& Optimize

Project Management

 1. Analyze: Define what the solution needs to accomplish, both in terms
of features and non-functional attributes (performance, usabil-
ity, and so on). Obtain agreement between all parties about these
requirements.

 2. Design: Define all solution components and their dependencies, identify
resources, and install a development environment. Iterative prototyping
sprints are used when applicable to clarify requirements.

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 183

 3. Configure and build: Configure, build, and integrate components based
on an iterative and incremental approach. Utilize multi-environment
testing and validation plans.

 4. Deploy: Create a plan to run and maintain the solution, including a sup-
port schedule. Migrate to a production environment, configure as neces-
sary, and communicate the deployment to the business user audience.

 5. Operate and optimize: Operate includes the maintenance tasks and
checkpoints after rollout that facilitate a successful application of the
solution and preserve its health. And continuously optimize these
operational tasks.

 6. Project management: Consists of processes that assist with managing
and monitoring the progress and maintenance of the project.

Next, using ASUM as an exemplar process by which to deliver big data and
analytics applications and services, I will map these stages to DevOps plays
that can be adopted for a DevOps adoption effort.

Analyze and Design For any big data and analytics solution, it is essential
to understand the sources, producers, and consumers of the data. As described
in the big data and analytics reference architecture shown in Figure 4-21, these
include multiple data types, spread across multiple sources, utilizing multiple
technologies. Furthermore, the data and analytics produced may also need to
be in different data types and to be delivered to multiple consumers, across
multiple technologies. An enterprise architecture documents the IT systems
(data stores, applications, infrastructure, and networks) and technologies that
define these big data and analytics sources, producers, and consumers, as
shown in the reference architecture earlier in this section (Figure 4-21).

Configure and Build Let’s look at the configuration and testing related
processes, in context of Big Data and Analytics applications.

 ■ End-to-end traceability: It is imperative that traceability exist across
the software development lifecycle and the data management lifecycle.
These lifecycles typically happen in parallel, but the teams have limited
interactions, and the artifacts limited traceability.

 ■ Test early and often: The creation of realistic, big data test datasets
can add significant extra time to projects due to the volume and vari-
ety of the datasets needed to test big data and analytics applications
and services. Test data management tools like IBM InfoSphere Optim

DevOps Adoption Playbook184

streamline the creation and management of test data sets, mask sensi-
tive data, automate test result comparisons, and eliminate the expense
and effort of maintaining multiple data clones for testing.

 ■ Data and service virtualization for testing: As organizations develop appli-
cations and services against big data stores that these applications need
in order to be fully tested, this may pose a challenge where

 ■ testing needs to be done against a data store that does not yet exist.
For example, this may involve a test against a social media
application where the social interactions have not yet taken
place.

 ■ testing needs to be done against a data store that is unavailable.
For example, the data may be in an external source that is
not yet available, or that is too expensive to access for testing
purposes.

 ■ testing needs to access data that cannot be accessed in its raw form.
This may involve medical or financial data that includes private
information.

In such cases, in order to perform continuous testing, the test data
needs to be virtualized or simulated. This can be achieved by simulat-
ing test data stores using service virtualization tools like IBM Rational
Test Virtualization Server (previously Green Hat) or CA Service
Virtualization (previously ITKO LISA). These tools allow for data stores
to be simulated by virtual representation running on a test virtualiza-
tion server. The testing is then performed against these virtual instances
of the data stores, without requiring the actual data stores to be utilized
or even present.

Deploy, Operate, and Optimize Deploying Big Data and Analytics
applications and services, operating them, and optimizing the operations has
its nuances, given the nature of these applications and services.

 ■ Continuous delivery: For big data and analytics applications, an incre-
mental development approach is recommended. Incremental develop-
ment means a staging and scheduling strategy in which the various
parts of the systems are developed at different times or rates and inte-
grated as they are completed. Adopting the practice of automated and
continuous delivery enables incremental development by allowing com-
ponents developed at different velocities to be deployed and tested as

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 185

they become ready for deployment, as opposed to a big bang approach
of deploying all components together.

 ■ Data store configuration management: Data store configuration manage-
ment is becoming a challenge for organizations with dynamic data
stores and analytics needs at scale. This is compounded by the prolifera-
tion of multiple types of data stores—relational databases, object stores,
NoSQL databases, Hadoop DFS, graph databases, data warehouse, and
data marts, to name a few. Configurations of data stores need to be
managed, versioned, and governed. These configurations change with
changes to the underlying data schema version and with changes to
the applications accessing the data.

Data store configuration management across multiple data stores
is a practice that needs to be adopted to manage the inventory of con-
figuration settings across multiple instances of data stores and to pre-
vent configuration “drift.” While for some data store technologies these
configurations are stored in separate XML files, for others they need to
be programmatically accessed and managed via an API. Deployment
automation tools like IBM UrbanCode Deploy have plug-ins for most
popular data stores, provide a central tool that can manage and store
multiple versions of these configurations, and also manage the inven-
tory of which data store instance is at which configuration setting ver-
sion, addressing these challenges.

 ■ Teams and culture: As with every set of technology-specific variants
of the DevOps plays, the teaming and culture aspects are essen-
tial. In the case of big data and analytics applications and services,
other than the traditional stakeholders and practitioners, there are
also the big data-specific stakeholders and practitioners: data store
administrators; data store developers (MapReduce, Spark, R, and
so on); ETL specialists; and business intelligence (BI) specialists,
to name a few. All these stakeholders and practitioners need to be
included in the DevOps adoption and enabled with the processes
being adopted, and their tools need to be integrated into the delivery
pipeline tool-chain.

Given the rapidly evolving nature of Cloud and Cloud services, and their
impact on driving innovation, the plays related to Cloud are covered in the
next chapter, which is dedicated to DevOps plays for the Innovation Edge.

DevOps Adoption Playbook186

Summary
This is a very long chapter. If I had put in all the content I could on the topics
covered in this chapter, it could be a book by itself. And that is not without
reason. The practices and capabilities covered here are the core of DevOps. If
you are a large organization looking to adopt DevOps across your organization,
this chapter needs to be the starting point for you. Now, a quick reminder—all
the plays in the chapter will not apply to you. The intent of this “playbook”
is to present to you all the potential plays. You need to use the information
presented in this and Chapter 3 to build your organizational playbook, select-
ing the plays that you need. As no large organization is monolithic or homog-
enous, you may need multiple variants of the playbook for various divisions,
programs, and even projects. Lastly, we are not done yet. These are just the
plays focused on optimization. Chapter 5 has plays focused on innovation. Chapter
6 has plays for scaling DevOps, and Chapter 7 has plays for the leadership
on how to lead a DevOps transformation. All these chapters will contribute
plays to your playbook.

So, let’s review what I covered in this chapter. I began, and I will begin the
following chapters, too, with some themes. These themes provide the core
capabilities or shifts in thinking and working you want to introduce in your
organization. The three themes I introduced were:

 ■ Minimizing cycle time
 ■ Reducing batch size
 ■ Establishing the right culture

These three teams are interrelated. Your goal for your organization, each
project in your organization, and even for each phase in your project is to
reduce Cycle Time (or as Lean practitioners like to call it, Lead Time). Reducing
batch size goes hand in hand as it drives reducing cycle time. It also reduces
risk and facilitates better planning and change management. And last but not
the least, all this is for naught, if one does not change the culture in the orga-
nization. I will talk much more about culture in Chapter 6 and 7.

The plays I introduced all have these themes interwoven through them.
They are the sets of actions and changes that need to be adopted to achieve
the results these three themes promise.

 ■ Establishing metrics and KPIs
 ■ Agile adoption

Chapter 4 DevOps plays for Optimizing the Delivery pipeline 187

 ■ Integrated delivery pipeline
 ■ Continuous integration
 ■ Continuous delivery
 ■ Shift left—testing
 ■ Shift left—Ops engagement
 ■ Continuous monitoring and feedback
 ■ Release management

For anyone who has been engaged in adopting DevOps for some time, these
terms and practices included in these plays should not be unique. I have pre-
sented them here with a focus on adopting them at enterprise scale for large,
distributed organizations, with significant Cultural Inertia, and existing rigid
processes and governance mechanisms.

Lastly, in the chapter I looked at certain technology-specific areas, present-
ing how various DevOps practices and capabilities may need to be tweaked for
the needs and nuances of these technologies.

 ■ DevOps for mobile
 ■ DevOps for mainframe
 ■ DevOps for Internet of Things
 ■ DevOps for big data and analytics

In the next chapter, I will continue to add on to the list of themes and plays
with themes and plays focused on driving innovation.

Federer’s New sABr Move

Turns out you can teach an old dog new tricks.
This summer, tennis fans were treated to a new maneuver by the

34-year-old tennis legend Roger Federer. It’s called the SABR and features
Federer moving way up on an opponent’s second serve to hit a half-volley
in an attempt to dictate pace and frustrate opponents. Whenever anyone
hears about it, the first question is: What does SABR mean?

It’s an acronym:

 ■ Sneak
 ■ Attack
 ■ By
 ■ Roger

Federer used it in his dominating win in Cincinnati and utilized it during his
other U.S. Open matches, with the exception of his fourth-round win over the
mega-serving John Isner. The move helps him position himself after he hits a
deep, chipped return and puts his opponents, like Richard Gasquet, off balance.

—Chase, 2015

The sport of cricket has evolved and innovated more than probably any other
sport that exists. While other sports have evolved by changing rules or equip-
ment, or introducing new, innovative plays like Federer’s SABR move, none
has created completely new formats for the game. Cricket in its original form
was called a test match and is (still) played with each match lasting five days!
Both teams bat for two innings each, and the game seems to go on forever.
With time, however, radical innovations were brought to the game to capture

ChApter 5

devops plays for
driving Innovation

The DevOps Adoption Playbook: A Guide to Adopting DevOpsin a
Multi-Speed IT Enterprise
By Sanjeev Sharma
Copyright © 2017 by John Wiley & Sons, Inc., Indianapolis, Indiana

DevOps Adoption Playbook190

an audience that did not have time or patience to watch a game for five days
at a time. This resulted in the creation of the one-day match format, back in
1971. The entire match is over in a day, with each side batting just one inning
each. The number of overs (a set of six balls by the same bowler) is limited to
between 50 and 60 per side, thus capping how long the game can last. With
the latest generation of TV-centric audiences demanding an even more exciting
format, 2003 brought yet another innovation to the game: the 20-over format,
called Twenty20 or the T20. These games are over in around three hours and
can therefore be completed in an evening.

These innovations, especially the T20 format, have resulted in a massive growth
of the audience in the cricket-playing world. One of the largest, most watched,
and most expensive sports tournaments in the world is the Indian Premier League
(IPL) annual T20 tournament. Its broadcast rights alone sold for an unprecedented
US$1.63 billion in 2009 for an eight-year deal (Kalavalapalli, 2016)! The market
drove the need for innovation, and the market paid dividends for what resulted.

The advent of these new formats also changed how teams were formed to
suit each format. Professional cricket clubs today are almost solely focused
on the T20 format, although national teams do still play all three formats.
The cricketing bodies of countries like England have recognized the need for
different teams for each of the formats. The shorter T20 and one-day formats
require younger, more aggressive players; here, fitness and agility trump every-
thing. The longer five-day format (with test matches played less frequently
nowadays) requires more experienced players with strategic knowledge and
the ability to stay the course over five days; in this case, strategic and defensive
skills trump everything. The shorter format is more tactical in its plays; the
longer format is more strategic. In each case, players with different skills, and
different plays, are needed to win.

optimize to Innovate
While this chapter is dedicated to plays for innovation, the need to optimize
must not be ignored. As I discuss in Chapter 4, most innovation-focused appli-
cations are designed to deliver innovative, new technology-driven capabilities
for the organizations. Examples include the following:

 ■ New business services. These are completely new services and capabilities
that, up to now, were not delivered by the organization to its users—for
example, a bank offering a peer-to-peer money transfer service to its clients.

Chapter 5 devops plays for driving Innovation 191

 ■ New business models. These are new business models for the organiza-
tion to introduce monetization of services they may not have monetized
up to now—for example, a trading desk of an investment bank offer-
ing a Greek calculation service to its partners, by exposing APIs to an
internally used service.

 ■ New models or platforms to engage with users. This is new technology to
interact with users. A good example is digital banking, where clients
can consume almost all their banking services via a mobile phone—
from bill payments to check deposits to applying for a loan.

 ■ New markets. This involves reaching completely new markets for the
organization. One example is banks introducing a peer-to-peer money
transfer service to capture new customers, such as Millennials who
need banking services but do not use traditional banks.

If you were applying the need to innovate to a startup, a new company with
no existing or legacy systems delivering business functions or services, then
the conversation would be limited to just the innovation-focused application.
However, most organizations, from large enterprises to small companies, have
existing software systems that are already delivering core business services
and, thus, business value to customers. In such organizations, the innovative
applications are almost always dependent upon the core business services
being delivered by these pre-existing, legacy systems. An innovative peer-to-
peer money transfer app offered by a bank needs the existing legacy systems
to deliver core services like identity management, fraud detection, anti-money
laundering services, and so on. If those services are already being delivered
to the rest of the banking application by these core systems, why would the
bank create new services to deliver them to the new innovation-centric apps?
The dependence is not negotiable. It is thus an architectural dependency in
each innovative app.

These back-end systems can potentially become a drag on the innovation-
centric apps’ need for speed. If the innovative app requires a back-end service
to make a change to fulfill its needs, then if the legacy app has a slower cycle
time to deliver the change, it can slow down the innovative app’s delivery time.
Optimizing the delivery pipeline and capabilities to deliver changes to the back-
end systems in a leaner and more efficient manner becomes a necessity in order
to innovate and remove the impedance mismatch in the speed of delivery of the
innovation-focused app and that of the legacy apps. Optimization becomes a
prerequisite of innovation.

DevOps Adoption Playbook192

Another reason why the back-end systems need to optimize is resources.
In most large organizations, a majority of the IT resources are being spent on
running and maintaining systems. If all the available resources—people and
money—are fully utilized with running and maintaining existing applications,
none will be available to invest in innovation. Optimizing the back-end system
to free up resources to invest in innovation becomes imperative.

the Uber syndrome
There is a new phenomenon that is driving the need to innovate across the busi-
ness world. It is known as the Uber syndrome. This is the urgent need for most
organizations, large and small, to act against the perceived threat of a competitor
coming from nowhere into their space, just like Uber, the ride-hailing app, did
in the taxi industry. The founder of Uber, Travis Kalanick, is not from the taxi
industry. Before he founded Uber, he started a peer-to-peer file sharing com-
pany called Red Swoosh, which he sold to Akamai in 2007 (Roettgers, 2008).

This fear of being Ubered is not limited to industries that seem vulnerable to
disruption. A recent IBM Institute for Business Value survey found that 60 percent
of global CEOs expect their next competitor will come from outside their industry
(IBM Institute for Business Value, 2016), with a new, innovative business model,
armed with maybe no more than a mobile app—like Uber did. This is a compel-
ling reason to act for most organizations—from financial service to retail to the
public sector. This need for innovation is based on a theme: disrupt or be disrupted!

This need for innovation is actually driving the need to adopt new technol-
ogy platforms and processes that are designed for innovating at speed. DevOps
and cloud-based Platform as a Service are certainly two examples. This need to
innovate is in turn driving the realization that these organizations need to opti-
mize their legacy application delivery capabilities. They need to do so to free
up resources—people and money—that can be invested in innovation. They
also need to do so to ensure that traditional slow delivery does not become
a drag on their ability to innovate with speed. DevOps again is the answer.

Innovation and the role of technology
A common misconception in today’s world, where most innovation is startup-
driven, is the role of technology in driving innovation. The innovation is rarely
in the technology itself. Yes, there are technology innovators like Apple, IBM,

Chapter 5 devops plays for driving Innovation 193

Netflix, Salesforce.com, and, of course, Tesla, where the core of their business
is new, innovative, disruptive technology. But for the vast majority of innova-
tive companies—from pharmaceutical companies like Regeneron, to clothing
companies like Under Armour, to eCommerce vendors like Alibaba, to hotels
like Marriott International, to government agencies like the UK’s HM Revenue
and Customs—the technology is the platform on which they deliver busi-
ness services to their users. The role of IT becomes not to deliver disruptive
and innovative technologies but to deliver a lean, efficient, predictable, stable
platform on which the disruptive and innovative business services can be
delivered. If the business services require the development of innovative and
disruptive technologies, then that is what IT needs to deliver. They should not
deliver innovative technology for the sake of delivering innovative technology
but to enable innovation for the business.

Innovating for New Business Models

who Is YoUr CUstoMer?

They had built an awesome app. A game changer. An app the whole world
could be a customer of. The app solved a major problem: customer service
phone hold times. Almost every adult in the country has experienced being
on hold on the phone for minutes, if not hours, with customer service. You
call a customer service and have to go through a series of menu options to
get to the right department, and then the wait begins. FastCustomer did
the waiting for you. You picked the company and department you wanted
to get to, in the app, and then you could go on with your life. The app
called you when a human being was at the other end and connected you!
(Martin, 2014)

The problem was that after the initial burst of purchases, the app stopped
selling. Whenever the app was covered by a media outlet or blogger, it sold,
but at other times, there were virtually no sales. They could not understand
why this happened. The problem was identified, the market was identified,
the app solved the problem in a simple-to-use, effective manner. What was
wrong?

The answer was that they were selling to the wrong people. The end
consumers of the app were users. They had wrongly identified them as
customers. Customers are the people willing to pay for the problem to be

continued

DevOps Adoption Playbook194

solved. Individual customers did not feel the pain enough to be willing seek
out a solution and pay for it! The real customers were the companies who
wanted to improve their customer experience and who were willing to pay
for a service to reduce customer hold times. FastCustomer made a change
in their business model. They made the app free to consumers (users) and
started selling the service to companies. These companies would pay to have
the app’s back end integrate right into their call center systems or even pay
to have a Call me back button right on their website! No more hold times.
FastCustomer had arrived.

Business Model experimentation
Experimentation for innovation is done not just to determine which are the
right features in an application or which web page will get more clicks, but
also to discover the right business model. As in the previous examples, the
same product, with a different, innovative business model, can be the differ-
ence maker between success and failure. Let’s examine how to discover new
business models.

As presented in Chapter 3, in their innovative book Business Model
Generation, Alexander Osterwalder and Yves Pigneur give several examples
of companies—like Nespresso, the home espresso machine vendor—who,
like the previous example, FastCustomer, had to experiment with various
business models to get to one that worked for them. The model would have to
allow them to take their product to market in a manner that provided the best
business value for the customers and thus allowed the company to establish
themselves in the market and become a successful business. They did not
change their product. They experimented with various business models to
find one that was the right product-market fit.

The business model of how the book was written is also innovative. The
authors, instead of interviewing dozens of business leaders from around the
world to develop, refine, and validate their ideas and propositions, set up a
community on Ning.com, a community building site, and started collecting
a fee for people to join the book as co-creators. They kept raising the price
till it went from 24 to 243 dollars. At this point, they had 470 people from
45 countries who were willing to contribute to the book, by reviewing and

continued

Chapter 5 devops plays for driving Innovation 195

rewriting content, contributing case studies, and helping design the heavily
illustrated book. The result was a best-seller that has become a must-read for
startups and innovators around the world, and a completely new book-writing
model (Wilson, 2010).

From the IT perspective, when people think of innovation, they think of an
app with cool, new features, one that, with its sophisticated technology and
fine-tuned user experience design, disrupts the industry it targets. However,
more innovation happens through the disruption of the business model, not
the technology. For example, although Uber has a really good, easy-to-use
mobile app, it did not succeed because of the features or ease of use of its app.
Having an easy-to-use app is the fee of admission into the mobile app world.
Where Uber innovated was in its business model, and to get there, Kalanick
and his team had to experiment with various business models (and they still
are). They started by providing a ride-hailing app that found idle limos that
could be hired at a much lower cost, between their scheduled rides. This still
exists within Uber as UberBLACK. The core business, though, evolved through
experimentation to become Uber as you know it today: non-professional driv-
ers providing rides for a fee in their personal cars.

Here, the role of IT becomes that of the platform with which experimen-
tation with the business model can occur. Several business models can be
introduced and rolled back, as needed. Rapid feedback can be gathered and
analyzed to assess the results of each experiment to decide whether to roll
forward or roll back. This feedback can be used to see which model works
with what user profile and which does not. The innovation is not the tech-
nology itself. When a customer who has hailed a taxi is standing at a street
corner, on a rainy night, waiting for their ride, they are not concerned with
what technology is used. They don’t care which mapping API is displaying the
location of their ride on the map or whether some of the services on the mobile
back-end are containerized. The goal of IT becomes that of a service provider
of a lean, efficient platform on which business models can be delivered and
rapidly changed for experimentation.

Innovating for New User engagement Models
Another common path of innovation is to explore new user engagement mod-
els. These new models may be to deliver new business capabilities to existing
customers or to capture new markets for existing capabilities. Experimentation
again plays a key role here to discover new engagement models.

DevOps Adoption Playbook196

Consider another real-world example. McDonald’s, the fast food franchis-
ing company, was trying a new approach to engage with its customers, by
expanding to selling groceries (The Movie Network, 2014). They developed a
fully automated convenience store, directly in the path of consumers who were
heading home from work. The automated store, shown in Figure 5-1, had vend-
ing machines selling everything a convenience store sells: from fresh food to
milk to snacks to DVDs. The stores were even made to be portable; this allowed
them to easily move the stores and experiment with locations. Unfortunately,
the experiment was a failure. Apparently, not everything can be sold through
an automated vending machine—not milk or fresh foods, for sure.

Instead of abandoning the entire concept, the executives looked at what
worked. DVD sales and rentals were working. No one hesitated to rent a DVD
from a vending machine. Who needed a human to check out a DVD? The
company decided to get rid of all the other automated vending machines and
just keep the DVD vending machine. Thus Redbox, the DVD, Blu-ray, and
video game rental kiosk company, was born!

Figure 5-1: redbox grocery kiosk in washington, dC, 2002 (Imgur, 2013)

Chapter 5 devops plays for driving Innovation 197

In this example, the actual business model, at its core, remained
unchanged—providing a self-serve kiosk to sell products to customers. What
did change was the technology platform on which the business services were
being delivered. It was enhanced with experimentation, changing how the
customers engaged with it, and was reduced from a full-scale kiosk deliver-
ing groceries for sale to a smaller kiosk delivering just DVDs. That platform
has since been enhanced to also include Blu-ray and video game discs. The
platform delivery team needed to be agile and to be able to transform (in this
case, significantly reduce) the platform in order to follow the direction the
business was taking and how it engaged with its clients to deliver business
services to them.

The IT team was responsible for the technology behind the platform, ensur-
ing it was agile and resilient to change. It was also responsible for ensuring
that there was detailed instrumentation embedded into the platform to provide
continuous feedback to the business. That was how the business saw that while
overall their kiosks were not succeeding, the DVD rental part of the business
was making money. They therefore chose to scuttle all but the DVD rental
part of the kiosk and focused on the narrow, but more successful, experiment
that worked.

In reality, as in the case of the original Redbox kiosk, the instrumentation
required to see which experiment is succeeding may be as trivial as being
able to measure which products are bringing in revenue and which are not.
In more complex scenarios where an app may be running multiple experi-
ments, a significant amount of instrumentation may be required to gather data
for the various experiments, followed by potentially intensive analysis of the
data to assess the result of every experiment individually, to provide the right
feedback to the business. I will discuss this in more detail in the next section
when I discuss the need to run experiments.

INNovAtIoN ANd the sports CUstoMer experIeNCe

Customer eXperience, or CX, is among the hottest issues facing CMOs and
all marketers today. The need to provide the most optimal CX at all times
is essential for success.

It is no different when it comes to professional sports. Long gone are the
days when the experience with fans was based entirely on what transpired
on the field. Today, the need is inherent for sports teams, as it is for any

continued

DevOps Adoption Playbook198

business, to put the customer front and center and deliver the best experi-
ence possible.

Over the past year or so … two NFL teams are upping their CX game.
The Indianapolis Colts utilize a mobile app to keep the in-game experience
engaging. And the Philadelphia Eagles partnered with Panasonic to provide
its fans with the highest resolution display end zone video boards in the
entire NFL along with a series of highly interactive HD boards around the
stadium.

—Olenski, 2015

Core themes
Just as I look at some core themes that weave through the various plays in
Chapter 4, I will now introduce some core themes that form the basis of mul-
tiple innovation-centric plays. These are as follows:

 ■ Achieving Multi-Speed IT
 ■ Building the right thing
 ■ Enabling experimentation
 ■ Delivering Antifragile systems

Achieving Multi-speed It

continued

MUltI-sport Athletes

Football players who participated in additional sports while in high school
dominated the first round of the 2016 NFL Draft on Thursday night.

Twenty-eight of the 31 players selected were multi-sport athletes in their
prep days, including No. 1 overall pick Jared Goff, who played both baseball
and basketball at Marin Catholic High School in Greenbrae, Calif.

Goff is one of 12 former three-sport athletes. He’s joined by the likes of
fellow quarterback Carson Wentz (baseball, basketball), receiver Corey
Coleman (basketball, track), and lineman Jack Conklin (basketball, track).

—Spiewak, 2016

Chapter 5 devops plays for driving Innovation 199

Without stepping into the debate over whether or not young athletes should
play multiple sports to develop multi-disciplinary skills, in the IT world, the
ability to support multiple delivery pipelines, with varying cycle times and
delivery velocities, resulting in Multi-Speed IT, is not an option—it is a reality.
As I discuss in Chapter 4, the real world requires DevOps to be adopted across
multiple delivery pipelines to support the various speeds and technology plat-
forms that different delivery teams may adopt. Because most business systems
require services from multiple applications, coordination across these delivery
pipelines is essential. Identifying and understanding the architectural dependen-
cies between the various services delivered by different delivery pipelines is
essential to ensure that the delivery and release of each application is coordi-
nated with that of other services and applications the application is dependent
upon, or which are dependent upon it. In addition, ensuring traceability across
these delivery pipelines is essential to effectively capture and analyze the sta-
tus of each delivery pipeline and proactively identify the impact of any issues,
delays, or changes in delivery and release plans of any application or service.

As I also introduced in Chapter 4 and shown here in Figure 5-2, there are
five specific areas where these multi-speed delivery pipelines need integra-
tion and the accompanying standardization of tooling across all the delivery
pipelines. Having a set of standardized or integrated tools, across the deliv-
ery pipelines, ensures proper planning, architectural design, traceability, and
status reporting across multiple, multi-speed delivery pipelines. Let’s look at
these five touchpoints in detail.

Development SCM Build Package
Repo

Deploy Application A Business
Capability

Enterprise
Release

Development SCM Build Package
Repo

Deploy Application BTest Stage Production

Development SCM Build Package
Repo

Deploy Application C

Development SCM Build Package
Repo

Deploy Application NTest Stage Production

Deployment Automation and
Orchestration

Service and
Test Environment

Virtualization

Release
ManagementAPIsPlanning and

Architecture

Figure 5-2: Multi-speed It touchpoints

 1. Planning and Architecture. The delivery and release plans for these
applications should not exist independently. You need to document

DevOps Adoption Playbook200

and understand the architectural dependencies between the various
applications. Only when these dependencies are identified will you be
able to assess properly which application and service are dependent
upon which one. Once you know these dependencies, you can properly
plan for the development, delivery, and release of each application and
service, in coordination with the plans of others that it is dependent
upon and those that are dependent on it. It is of no use for a particular
application to utilize all the resources available in order to be released
by a particular date, only to discover that a service it is dependent upon
will not be available for several more weeks. Those resources could have
been better utilized elsewhere, and more time could have been given
to releasing the application. Once plans are made, it is essential that
a standardized tool set be used to manage the project tasks and work-
items. All the practitioners, across all delivery pipelines, should have
access and visibility to the delivery plans, work-items assigned to their
team, and the project backlogs. The level of visibility that practitioners
need to have across projects should be determined by the dependencies
between their projects and others.

 2. APIs. The development and release cycle of various applications is depen-
dent upon that of other applications because of the architectural depen-
dencies one application has on another. To make things more complex,
these architectural dependencies may even be version- dependent. That
is, a particular version of one application can only communicate with
certain versions of another application. The point-to-point integration
between the applications changes with every new version of each appli-
cation. The architectural dependency can be reduced by de-coupling
the applications. This is achieved by introducing well-defined APIs that
are used for the communication between the applications or services.
These APIs allow an application to be developed without knowing the
detailed implementation details of the other application and eliminat-
ing point-to-point integrations that change with each new version of
the application. The APIs typically do not change much over time,
allowing the architectural interfaces between the applications to remain
unchanged. Designing and implementing good APIs is the topic of a
play that I discuss later in this chapter.

 3. Deployment automation and orchestration. I discuss deployment automa-
tion in detail in Chapter 4. This is an area that needs to be standardized
across all delivery pipelines. The ability to deploy any application to the

Chapter 5 devops plays for driving Innovation 201

right environment, as and when needed, is essential. When different
delivery pipelines have different deployment tools, this creates complexi-
ties when deployments need to be coordinated across delivery pipelines.
Standardizing deployment processes and tools allows for a single deploy-
ment process to be created to deploy all the components, applications,
and services across multiple delivery pipelines and environments, if
needed. The same holds true for provisioning and orchestrating envi-
ronments. Having a single platform to provision and orchestrate allows
for simplification of the provisioning and orchestration processes and
allows multiple environments to be provisioned as needed.

Now, it is not always practical to standardize on just a single technol-
ogy or tool for deployment automation or for environment provisioning
and orchestration. However, the goal should be to minimize the number
of tools. Having just one or at the most two standardized tools for each
technology stack is a good goal to strive for.

 4. Virtualization of services and environments for testing. As various appli-
cations and services become ready for testing, other applications and
services they are dependent upon may not be ready, as they are likely
to have different cycle times and release plans. Availability cannot
always be coordinated. In addition, test environments and test data
may not be available as and when needed by each application or service.
Virtualizing services, applications, environments, and data sources
addresses this problem, allowing each application and service to be
tested, independent of other applications and services. I discuss these
solutions in detail in Chapter 4.

 5. Release management. The release of a business system, comprised of
multiple applications and services and delivered via multiple delivery
pipelines, needs to be a coordinated effort of executing the delivery and
releasing plans across all the involved delivery pipelines. Traditionally,
organizations have relied on massive spreadsheets with data on each
component that is being developed and delivered, the dependencies
between them, and their status in their respective delivery pipelines.
This involves tracking and managing the applications and services as
they progress through the various quality gates that need to be validated
before release to production. They need to track and manage all the
integration points and their testing, across all the dependent applica-
tions and services. It is essential to leverage a standardized tool that
tracks and manages the release of each application and service, across

DevOps Adoption Playbook202

all delivery pipelines and technology stacks. An added benefit would be
if this tool could extract status information for each delivery pipeline
automatically from the project and work-item management and also
extract the status information for deployment automation tools being
utilized by each delivery pipeline.

Enabling the capability to support Multi-Speed IT is essential to foster
innovation. When delivering new innovation, you need speed. You need to
be able to deliver products as and when needed and to be able to run multiple
experiments (as I will discuss next). You need to be unencumbered by the
dependencies of other delivery pipelines. You cannot be restricted by the speed
of the slowest delivery pipeline.

Building the right thing

overtrAININg sYNdroMe

It is no secret among athletes that in order to improve performance you’ve
got to work hard. However, hard training breaks you down and makes
you weaker. It is rest that makes you stronger. Physiologic improvement
in sports occurs only during the rest period following hard training. This
adaptation is in response to maximal loading of the cardiovascular and
muscular systems and is accomplished by improving efficiency of the heart,
increasing capillaries in the muscles, and increasing glycogen stores and
mitochondrial enzyme systems within the muscle cells. During recovery
periods these systems build to greater levels to compensate for the stress
that you have applied. The result is that you are now at a higher level of
performance.

If sufficient rest is not included in a training program, then regenera-
tion cannot occur and performance plateaus. If this imbalance between
excess training and inadequate rest persists, then performance will decline.
Overtraining can best be defined as the state where the athlete has been
repeatedly stressed by training to the point where rest is no longer adequate
to allow for recovery. The “overtraining syndrome” is the name given to the
collection of emotional, behavioral, and physical symptoms due to over-
training that has persisted for weeks to months. Athletes and coaches also
know it as “burnout” or “staleness.” This is different from the day-to-day

Chapter 5 devops plays for driving Innovation 203

variation in performance and post exercise tiredness that is common in
conditioned athletes. Overtraining is marked by cumulative exhaustion
that persists even after recovery periods.

The most common symptom is fatigue. This may limit workouts and may
be present at rest. The athlete may also become moody, easily irritated, have
altered sleep patterns, become depressed, or lose the competitive desire and
enthusiasm for the sport. Some will report decreased appetite and weight
loss. Physical symptoms include persistent muscular soreness, increased
frequency of viral illnesses, and increased incidence of injuries.

—Jenkins, 1998

While overtraining may cause athletes to become “moody, easily irritated,
have altered sleep patterns, and become depressed,” one thing that certainly
causes any IT professional, especially developers, to have the same emotional
experience is to passionately work on a project, putting in hours of work
and sweat equity to deliver the project, only to discover that they have built
the wrong thing. Whether it be a full project or just a module of code, it is a
complete waste of resources and individual contributions of time, energy, and
problem solving to deliver something, only to have it never be used because it
was solving the wrong problem. Entire companies have gone under because
they invested their future, or in some cases even their very existence, in a
product that the market did not want or accept. Think of any dotcom startup
failure—from Pets.com, to eToys.com, to Webvan.com. The large corporation
IT space is full of such projects that never saw the light of day or were shelved
soon after they were launched due to a lack of customer interest and traction.
In most cases, this mismatch between the product capabilities and customer
expectations was not discovered till the product was fully developed and
delivered, only to be shunned by users.

Lean Startup
The Lean startup movement, launched by Eric Ries (Ries, 2011) in his seminal
book by the same name, presents an alternate approach to delivering products
(IT or otherwise). In his approach, the goal is not to build a full product but to
ensure that you are building the right product by continuously validating the
product’s vision with users. This validation is done by developing a cycle that
allows you to keep ensuring that you are building the right thing as you deliver

DevOps Adoption Playbook204

small steps of new capability (think small batches) and rapidly get feedback on
what you just built from actual users (think minimized cycle time). As you can
see, these principles are completely in alignment with the DevOps principles
I introduce in Chapter 4.

The four core pillars of the Lean startup are as follows:

 1. Eliminate uncertainty. Have a well-defined methodology around deliver-
ing a product. The goal is not to put in heroic efforts to get a product out
the door, no matter what, but to do so in a well-organized, disciplined
manner. Once again, this is in line with the DevOps plays presented
in this book.

 2. Work smarter, not harder. The most important question to ask is not “Can
this product be built?” but “Should this product be built?” Engaging
users and potential customers early to validate the premise of the
product, before even a line of code is written, and working with them
through the development lifecycle is the only way to ensure that the
right product is being delivered.

 3. Develop an MVP. A minimum viable product (MVP), or in some cases
minimum viable feature, is the bare minimum capability you can take to
a user to see if it fulfills their needs and delivers business value. An MVP
is the pathway to learning with the least possible investment made.

 4. Validated learning. The unit of progress in the Lean startup method is
validated learning. When teams spend their time continuously figuring
out whether they are building the right thing for their users, it ensures
that they are able to change paths—what the Lean startup movement
calls pivot—as soon as they discover that they have deviated from the
user’s needs.

the MINIMUM vIABle prodUCt

[A] minimum viable product in the world of apps is the absolute bare mini-
mum set of features and functionality that you need to develop in order to
meet the need of your customers and test your idea in market. In less tech-
nical terms, putting together an MVP is sort of like building a sports team.
Your minimum viable product is like your set of star players—your incredibly
talented quarterback (or your playmaking number ten, if soccer is more your
thing). With that player signed to a contract (or equivalently that killer app

Chapter 5 devops plays for driving Innovation 205

The Lean startup movement—and it has become a movement—has become the
approach, not just to use to deliver new products in the startup world but also
to deliver quality IT systems in the enterprise IT world. Whether the end-user
is a Millennial looking for the next “change-the-world-of-networking” app, an
employee looking to better understand his employer-provided health benefits, or
a sales rep looking for the right product for his longtime, loyal customer, the Lean
startup approach can ensure that there is no over-production of features and capa-
bilities that no one uses. It ensures that the delivery teams build the right things.

Design Thinking

Design as a professional discipline has undergone a tremendous evolution in the last
generation from a practice focused mainly on aesthetic style to one with a clear and
explicit focus on the “user” (aka: person or group of people who use a product or
service) and their hopes, desires, challenges, and needs.

By establishing empathy with the user, designers are able to work toward
outcomes that meet those needs more successfully.

This user-centered approach known as “design thinking” enables designers and
others to address a wide range of complex business and social issues.

—IBM Design, 2016

The three principles that are the pillars of design thinking are presented here.
These principles exist to ensure that you are building the right thing.

1. A Focus on User Outcomes: Our users rely on our solutions to get their jobs done
everyday. Success isn’t measured by the features and functions we ship—it’s
measured by how well we fulfill our users’ needs.

2. Diverse Empowered Teams: Diverse teams generate more ideas than homogeneous
ones, increasing your chance of a breakthrough. Empower them with the expertise
and authority to turn those ideas into outcomes.

3. Restless Reinvention: Everything is a prototype. Everything—even in-market
solutions. When you think of everything as just another iteration, you’re
empowered to bring new thinking to even the oldest problems.

—IBM Design, 2016

feature developed), then you can start to think about the rest of the roster/
other app extras that will help improve your likelihood of success over time.

—Blue Label Labs, 2016

DevOps Adoption Playbook206

Coaches need to prepare for the next game by experimenting with new
plays to address the challenges of playing against a particular team or to
address deficiencies in plays observed in the last game or practice. Similarly,

Organizations like IBM have incorporated both Lean startup and design
thinking principles into their product offering management processes.
They have further operationalized the development and delivery of the
right thing by adopting DevOps practices. The result: they build the right
thing, correctly.

enabling experimentation

experIMeNtAtIoN IN CoAChINg

Many coaches develop their skills and expertise through their experiences
and by watching other coaches. However, simply acquiring experiences
does not guarantee coaching competence. It is the integration of experience
and knowledge in a meaningful way that promotes learning and in turn
develops expertise. Coaches need to know how to best learn through their
experiences. Reflective practice is a major learning tool in this regard….

Once coaches are armed with a few solutions, they then need to explore
the likely consequences of each and select the most appropriate response.
In some cases this experimentation may be hypothetical. They may present
their ideas to their peer coaches for feedback. Hypothetical experimenta-
tion can be a practical way to reflect after a season is over and coaches
are preparing for a new season. Real-world experimentation occurs in the
sport domain where coaches can carry out their envisioned solution and
review its impact.

It is important to note that experimentation within reflective practice is
different than trial-and-error practice. Trial and error simply involves doing
something and when it fails, doing something else until something works.
The approach is random and unpredictable in comparison to reflective
experimentation. In reflective experimentation, the idea is to build upon
existing knowledge by drawing from experiences and learning to make
educated selections based on the relevant information. This approach is
more predictable and thoughtful and promotes a more effective learning
environment for athletes.

—Farres, 2004

Chapter 5 devops plays for driving Innovation 207

an organization driving innovation needs to be able to experiment with new
ideas, new features, new user experiences, new user interfaces, new business
models, and new technologies. As I will present in the first play I discuss in
this chapter, there are two concepts in driving innovation, made popular by
the Lean startup movement:

 ■ Minimum viable product
 ■ Fail fast

The goal of experimentation is to prevent the development of fully func-
tional products to see if they are the right product and instead to experiment
with an MVP and fail fast with it so you can eventually get to the right product
that succeeds.

This approach of delivering minimum viable products and failing them fast
is all designed for rapid experimentation. The speed of innovation is driven by
the speed with which you can run multiple experiments and rapidly fail with
those that should fail in order to discover the ones that succeed.

A/B Testing
A/B testing is a common technique used to enable this rapid experimentation
by running tests of multiple variants of a feature in parallel. The goal of A/B
testing is to present two versions of a web page, feature, or app randomly to
users to see which works better or is more productive. The process requires
instrumentation built into the app to ensure you can measure various details
of how the users interacted with the two versions and compare them. Such
testing allows developers and business teams to make decisions on which ver-
sions of features to keep and continue developing and which to drop.

Here are some core practices for implementing A/B testing to get maxi-
mum results and implement fail fast for the features whose versions are
being tested:

 ■ Define measures of success. What metrics and measures will determine
which version has succeeded? Items sold, registrations made, number of
clicks, time spent, items browsed, exits away from page (bounce rate),
shopping carts abandoned—measures of success or failure should be deter-
mines beforehand, and instrumentation put in place to measure them.

 ■ Simultaneous testing. For A/B testing to work, both versions need to be
presented to an equal number of unique users for the same period of
time.

DevOps Adoption Playbook208

BUIldINg the ANtIFrAgIle Athlete

I just came back from the Seattle Sounders 2014 Sports Science Weekend
on Building the Anti-Fragile Athlete. . . . The first [session], by Sounders
Performance Manager Dave Tenney, presented a general overview of

 ■ Consistent versions across the app. The same version of the feature should
show up across the app, and not just be limited to a few areas, for the
approach to work and produce consistent results.

 ■ Monitoring over time. Statistically significant data sets need to be col-
lected to ensure proper analysis of the test results from both versions.
The tests should therefore be run for a long enough time to get enough
users to use the feature. This also allows you to capture trends and
eliminate the impact of outliers.

 ■ Multiple A/B tests. The idea is to continuously produce small changes
(small batches) and rapidly do A/B testing to determine which sets of
changes work. This allows for failing fast with minimal waste.

To be able to run A/B tests, you require certain key capabilities in the deliv-
ery platform and the production environments:

 ■ The ability to deploy the two versions of the apps to two sets of serv-
ers to allow half of the users coming in to be routed to each of the two
versions. This requires deployments to be targeted to sets of servers.
An all-or-nothing deployment model, which deploys an app to all the
servers, will not work.

 ■ Routing capability to randomly route users to each set of servers with
an equal number of users going to each set.

 ■ The ability to roll deployments forward to replace the version that failed
with the version that succeeded.

Rapid experimentation therefore needs a technology platform—an applica-
tion delivery pipeline—that is designed to enable experimentation. It must
be able to deliver new capabilities and features fast to targeted sets of servers,
to be able to monitor application and user behavior, and to be able to capture
the right test data and analyze it to fail fast.

delivering Antifragile systems

Chapter 5 devops plays for driving Innovation 209

The greatest challenge to an athlete is injury. However, athletes cannot
avoid injury. Being exposed to situations that can cause an injury is a part
of what an athlete does. And I don’t just mean a contact sport like American
football or high-risk sports like the vault in gymnastics, which are by their
very nature high-velocity impact sports, but also seemingly “safe” sports like

where the concept of Building an Anti-Fragile athlete came from (too
many games lost to injury), what lessons we can learn from the most
anti-fragile industries (airlines and nuclear power), and if we can in fact
take a fragile athlete and change him into one that is injury resistant (it
appears so).

In the field, the Sounders [are] recognized for being at the forefront of
obtaining and analyzing sport and performance data on recovery, nervous
system readiness, relationships between injuries and compliance with cer-
tain initiatives, sleep, distances travelled by athletes, and the types of loads
the athletes’ experience. Two metrics jumped out at me.

One was that they are able to measure what is termed “velocity load”
vs. “body load.” This is where the technology available is again astound-
ing me. Not only are they using GPS to measure the distance that each
athlete is covering during games and practices, but they are also mea-
suring the nature of those distances. “Velocity load” represents linear
movement (sprinting downfield, for example), is extensor dominant, and
is more common during a regular game situation. Body loads represent
changes in direction. They tend to underload the posterior chain and
occur with greater frequency during small-sided games. Once they have
this data, they can analyze it to gain insight into the musculoskeletal
stresses on individual athletes.

Another interesting metric was sleep data. They use monitors to
track what time their athletes go to bed each night, when they get up,
and how much tossing and turning they do. Dave noted that the most
consistently high performers in their club are the ones that sleep the
best, not only in terms of number of hours and regularity but in qual-
ity as well. The average times two of their best athletes went to bed?
9:44 and 10:15 pm.

—Cavin, 2014

DevOps Adoption Playbook210

golf or tennis where injury can come from athletes over-extending or over-
stressing their muscles. Athletes can be impacted by an injury anywhere,
from missing a few minutes of a game to a career-ending injury, to even per-
manent disability or death. A tremendous amount of research has been done
to help athletes train and condition to make them thrive in these high-stress
environments, to make them resilient, to make them recover faster and be
even stronger, to make their bodies Antifragile. This also applies to IT sys-
tems, especially IT systems designed for continuous change, for continuous
experimentation, that need to be able to thrive in chaos, in stressful condi-
tions where servers go down, and new ones come online all the time—to be
Antifragile.

The term Antifragile was coined by Nassim Nicholas Taleb, an options trader
who has written a series of books on randomness, on probability and their
impacts on the markets, and on life. He introduced the term for the first time
in his book The Black Swan (Taleb, 2007), where he discusses rare events,
which he contends are not as random and rare as people think—like stock
market crashes. He then wrote a book named Antifragile (Taleb, 2012), where
he expanded on the concept of antifragility to describe things that are neither
fragile nor robust, but that, in fact, benefit from chaos.

If you are reading this book in a printed format, it is a robust artifact.
You can drop it, and it will not break. On the other hand, if you are reading
this on an e-reader or tablet, the device is fragile by nature. Dropping it on
a hard surface is very likely to damage it. These are both examples of sys-
tems you are very familiar with. Taleb challenges us to think of Antifragile
systems—those that are neither fragile nor robust but are such that they
become stronger when put in stressful situations. All living, and really most
organic, systems are Antifragile in nature. An example Taleb gives is that
of a bone. When broken, if allowed to heal properly, the resulting healed
spot on the bone is actually denser and thus stronger than the undamaged
bone was. Vaccines inherently work on leveraging the antifragility of ani-
mal immune systems. A human or animal injected with a small quantity
of a germ produces antibodies that can protect it from an actual infection
of the germ.

The human brain is the ultimate example of an Antifragile system. As
you read this book—in print or on your tablet—if you happen to find parts
of the book interesting enough to commit to memory, a stress situation
of trying to forget them actually makes the memory imprinted in your
neurons stronger. You can’t ever consciously try to forget something; it

Chapter 5 devops plays for driving Innovation 211

only makes you remember more—ask any heartbroken teenager. Let’s try
an experiment: if I ask you to not think of a “dancing monkey eating a
banana” as you read the rest of this book, I have created a stress situation
for you by asking you to not think of something, which is an impossibil-
ity. As you continue to read this book, your Antifragile brain neurons are
going to randomly show you an image of a monkey doing the whip nae nae
while devouring a banana. You have no way to prevent it from happening.
You can thank me later…

To summarize:

 ■ Fragile things break or get damaged under stress.
 ■ Robust things are unaffected by stress; they grow neither stronger nor

weaker.
 ■ Antifragile systems become stronger under stress conditions.

It systems and Antifragility
Ops teams have traditionally always been striving to make their systems robust.
They want systems that don’t go down. They want systems that are unaffected
by any stress situations they may encounter. They want systems that are pre-
dictable in their behavior so that they can mitigate every stress situation if it
happens, which may cause systems to go down or even just degrade in perfor-
mance. In order to make a truly robust system, you need to be able to predict
and build into the system and to mitigate each and every source of failure in
the system. In today’s world of multiple unknowns, this is literally impossible.
Systems today are not static. They are dynamic with servers being provisioned
and de-provisioned in real time. They are leveraging multiple services from
multiple providers, several of which may be owned by other supplier teams,
including third-party suppliers outside their organization. The sheer number
of potential failure points makes it impossible to predict failures and make
mitigation plans for them. Add to this the additional stresses of the change
caused by continuous delivery of new versions of applications and services
being delivered by development teams that are constantly creating new innova-
tions, and the failure points increase exponentially. To truly architect systems
to enable DevOps, especially DevOps for applications focused on innovation
and thus experimentation, you must avoid this approach, which is destined
for failure.

DevOps Adoption Playbook212

The alternative approach is to use Antifragile systems. These systems
assume that failures will happen. Servers will go down. Discs will fail.
Networks will deliver traffic with high latency. Network switches will
fail. Third-party network connectivity providers will go offline. Memory
allocated will not be sufficient. Data sets will exceed the capacity of the
queues handling them. Entire sources of data streams will go down or
deliver the streams too slowly. Third-party services will not conform
to the service level agreements (SLAs) of the providers and suppliers.
Applications being delivered will have defects. Too many users will want
to access a hot, new application feature. Middleware configurations will
be incorrectly set up or not fine-tuned for the app in question. Hackers
will try to compromise services. Bots will overload the app with use-
less traffic. An app completely separate from yours will cause a service
you need to go down. An app in another system will crash, creating a
domino effect in the systems, which will impact your app. Humans will
intentionally cause disruption. Humans will insert malicious backdoors
in services. Humans will insert benign Easter eggs in their code. Humans
will make errors.

You need to build systems that thrive in this chaos. These systems must be
built to handle situations where you assume beforehand that something will
go down and the system will need to stay up anyway, by finding an alternate
way to get the services it needs to stay up. Here are some key characteristics
of such an Antifragile system:

 ■ Fail fast. In line with the principle of fail fast, Antifragile systems need
to be built to handle any failure—fast. One popular approach is to
build systems that never fix a server instance that has a fault or is not
functioning or performing as desired. You just kill that server instance
and replace it with a new instance, and you do so without allowing the
rest of the system to be impacted.

The goal is to have systems that never go down, even for mainte-
nance or upgrades. Facebook never shows a message stating it will
be “down for maintenance this Sunday night from 2 a.m. to 4 a.m.”;
the next time you log in, you just get the upgraded version of the
site. I will discuss techniques like blue-green deployments later in
this chapter.

 ■ Fail often. How do you prepare to handle failure and to handle it fast?
You fail often.

Chapter 5 devops plays for driving Innovation 213

ChAos MoNkeY ANd NetFlIx sIMIAN ArMY

Imagine getting a flat tire. Even if you have a spare tire in your trunk, do
you know if it is inflated? Do you have the tools to change it? And, most
importantly, do you remember how to do it right? One way to make sure
you can deal with a flat tire on the freeway, in the rain, in the middle of
the night is to poke a hole in your tire once a week in your driveway on a
Sunday afternoon and go through the drill of replacing it. This is expen-
sive and time-consuming in the real world but can be (almost) free and
automated in the cloud.

This was our philosophy when we built Chaos Monkey (Figure 5-3), a
tool that randomly disables our production instances to make sure we can
survive this common type of failure without any customer impact. The

Figure 5-3: Netflix simian Army (image source: github
.com/Netflix)

continued

DevOps Adoption Playbook214

Antifragile systems need to be able to address failures continu-
ously. Unfortunately, while all IT Ops organizations have plans and
protocols to handle incidents, they are rarely tested. A sports team
has to practice continuously, through pre-season and the season, to
perfect the plays they want to run. This may be a standard set of plays
they run all the time, or a game-changing play they want to run as a
surprise tactic to win a critical game. The New Orleans Saints football
team won Super Bowl XLIV in 2010 by running a surprise “on-side”
kick against the Indianapolis Colts. However, they succeeded in the
play not because they caught the opposing team off-guard with an
ambush (which they did) but because they practiced it several times
and only added it to their playbook after it worked perfectly in prac-
tice (Triplett, 2014).

 ■ MTBF to MTTR. The success of Antifragile systems needs to be mea-
sured differently than for robust systems, and so it requires different
metrics. Robust systems have traditionally used a metric called mean
time between failures (MTBF) to measure their stability. MTBF mea-
sures the time period between failures or incidents. An Antifragile IT
system should not focus on MTBF. The goal is to fail fast and fail often,
making that metric counter-productive. Antifragile systems assume
that failures will happen and that there is no way to avoid them. As a

name comes from the idea of unleashing a wild monkey with a weapon
in your data center (or cloud region) to randomly shoot down instances
and chew through cables—all the while we continue serving our customers
without interruption. By running Chaos Monkey in the middle of a business
day, in a carefully monitored environment with engineers standing by to
address any problems, we can still learn the lessons about the weaknesses
of our system and build automatic recovery mechanisms to deal with them.
So next time an instance fails at 3 am on a Sunday, we won’t even notice.

Inspired by the success of the Chaos Monkey, we’ve started creating new
simians that induce various kinds of failures, or detect abnormal condi-
tions, and test our ability to survive them; a virtual Simian Army to keep
our cloud safe, secure, and highly available.

—Tseitlin, 2011

continued

Chapter 5 devops plays for driving Innovation 215

result, an Antifragile system focuses its architecture and operational
models on mean time to resolve (MTTR). How quickly can a failure be
repaired and a service that has gone down be brought up? How can it
minimize MTTR and also minimize the impact of a service being down
on other services and the overall system? How can it go to an operational
state where, although servers may go “red,” services are always “green”?

 ■ Cattle not pets. Fragility in systems actually comes from a desire to make
them too robust. System administrators who maintain individual servers
to keep them always up take steps to provide all the care and feeding the
servers need to handle any issue or stress situation they may face and
manually handle the situation when it does occur. The servers are inher-
ently unique, so they treat them like pets. This would be fine in a world
of physical servers with static instances running on them. However, in
today’s dynamic world, this is not scalable. Automation is needed both to
manage the servers at scale and to monitor them and mitigate challenges
in real time. They need to be treated like cattle. Cattle do not have names.
For all intents and purposes, they are inherently identical to each other.
They are tagged using a scalable naming convention (CattleTags.com,
2016). They are culled if they get sick. They are fed in bulk. They are
managed and maintained in bulk. And they have a finite, pre-determined
lifespan, which ends with them being steak or hamburger or sausage.1
In a similar manner, server instances need to be named using a scalable
naming convention, not individual names. They need to be identical to
each other. They need to be monitored and managed in bulk. They need
to be killed and replaced with new instances when they have issues. And,
they need to have a predetermined, finite lifecycle that manages how they
are provisioned and de-provisioned (McCance, 2012, Bias, 2012). Sorry,
no more cows named “Daisy” live on the cattle ranch. (If they do, they
are the rancher’s pet.) Similarly, no more servers named midnight.rational
.com should live in your datacenter.

I will discuss leveraging cloud technologies to architect and deliver
Antifragile systems later in this chapter.

Next, I will discuss some of the plays dedicated to driving adoption of
DevOps for the business intent of driving innovation: DevOps for applications
and services focused on the innovation edge.

1 My apologies to vegetarians and vegans for this analogy. Sports analogies really did not
work here. I tried.

DevOps Adoption Playbook216

The key points in this article are as follows:

 ■ 1,018 athletes were current and former students.
 ■ They were representing 107 countries (a total of 206 countries competed

in the 2016 Rio Olympics).
 ■ They were from 223 American colleges and universities.

The colleges and universities in the United States have thus developed a
platform for sports and athletics that is truly world class. It is a platform that
is broad enough to support almost every Olympic sport (and more—think
American football, which is not an Olympic sport, and the Winter Olympics
sports, which are not included in this count). It is also a platform that has
attracted, through scholarships and world-class training facilities, the world’s
best emerging athletes (Farrell, 2008). It is a truly agile, resilient, scalable,
reliable platform.

What would delivering such an agile, resilient, scalable, reliable DevOps
platform entail? In Chapter 4, I present multiple approaches to building an

play: Build a devops platform

AMerICA’s sChools: A plAtForM For over 1,000 olYMpIANs

For many NCAA student-athletes, dreams of Olympic medals are just within
their reach.

There are 1,018 incoming, current, and former NCAA student-athletes
set to compete in the 2016 Summer Olympics in Brazil, representing 107
countries and 223 NCAA member institutions across all three divisions.

Of the 1,018 athletes competing, 168 are current student-athletes com-
peting in 15 sports, with swimming and athletics as the most represented
events with 64 and 42 athletes, respectively.

California will send 13 current student-athletes to the summer games,
the most by any university. The Bears also rank second amongst all NCAA
programs with a combined 40 athletes competing in the summer games.
Southern California edges out its fellow Pac-12 member with an impressive
42 athletes that will represent the Trojans in Rio. Stanford rounds out the
top three with 39 athletes.

—Martinez, 2016

Chapter 5 devops plays for driving Innovation 217

application delivery pipeline. These include both a technology-agnostic point
of view and approaches that are technology specific. Let’s merge those ideas of
building an integrated delivery pipeline with the need for Antifragile systems
that I presented earlier in this chapter. Because the focus of this chapter is
on DevOps plays for innovation, the need for a DevOps platform that sup-
ports the themes I presented earlier (and which are repeated here for ease of
consumption) is the priority:

 ■ Achieving Multi-Speed IT
 ■ Building the right thing
 ■ Enabling experimentation
 ■ Delivering Antifragile systems

 While such a platform can be delivered on any underlying infrastructure,
leveraging cloud technology to deliver it is imperative. Only a cloud platform
can provide the agility, flexibility, resilience, scale, and speed needed to deliver
on the requirements of these themes.

Chapter 4 contains the following list of capabilities that go into a delivery
pipeline tool stack:

 ■ Source code management
 ■ Build
 ■ Continuous integration
 ■ Deployment automation
 ■ Middleware configuration
 ■ Environment configuration
 ■ Environment provisioning

To better understand how all of these capabilities fit together to set up a
delivery pipeline, let’s revisit the figure of an application delivery pipeline
from Chapter 4 (Figure 5-4).

Development SCM Build Package
Repo

Deploy Test Stage Prod

Figure 5-4: Integrated delivery pipeline

DevOps Adoption Playbook218

As you can see in the figure, there are application development, testing,
and delivery tools, and there are environments (Dev, test, stage, and produc-
tion, for example) to which the application is continuously delivered. When
building a DevOps platform, where the application development, testing,
and delivery tools are installed is not the critical decision. They can be
installed on-premises on traditional hardware, or they can be installed in
the cloud platform; it does not make a significant difference to the capability
of the platform. It certainly makes a difference to the performance of the
tools, but not their functionality. There is the alternative scenario, where
these tools are not installed and managed by the organization at all, but are
consumed as a Software as a Service (SaaS) offering, delivered as managed,
hosted tools, by a tool vendor. Most popular DevOps application deliv-
ery tools, like Git, Jenkins, IBM Rational Team Concert, IBM UrbanCode
Deploy, and so on, are all available as SaaS offerings, with pay-as-you-go
subscription models.

The critical decision for the DevOps platform is the target deployment
environments—Dev, various test environments, various staging environ-
ments, and production. When I speak of delivering Antifragile environ-
ments, these are the environments that need to be Antifragile, especially
production.

Application delivery and Antifragile systems
One of the core requirements of Antifragile environments is the elimina-
tion of downtime for standard planned operations like maintenance and
application deployments. The environment services and the applications
running on the environments should also not go down, outside of outages
due to incidents.

Building such high-availability environments requires several capabilities:

 ■ Redundancy built into the environment services
 ■ Redundancy built into the application architecture
 ■ Blue-green deployments as a part of the continuous delivery process
 ■ Continuous monitoring of the environments and applications to identify

issues in real time and mitigate them if possible

From a DevOps perspective, the key focus needs to be on implementing
blue-green deployments to ensure no downtime happens due to application
deployments to production.

Chapter 5 devops plays for driving Innovation 219

environment Abstraction
The first and foremost goal of building the right DevOps platform, especially
one that is Antifragile, is to abstract the environment and infrastructure
concerns from the practitioners developing and testing the applications and
services. To them, the environment should appear as an abstract set of infra-
structure or platform services that they can leverage and utilize to develop
and deliver. This allows them to achieve delivery of multiple applications
through multiple delivery pipelines, performing at multiple speeds; to achieve
rapid experimentation, using techniques like A/B testing, of business ideas

hIgh AvAIlABIlItY wIth BlUe-greeN deploYMeNts

The Bluemix Garage Method website is continuously delivered—as often as
daily. To ensure that the transition to the upgraded version of the website
has zero downtime, the team implemented blue-green deployment. As a new
function is pushed to production, it is deployed to an instance that isn’t the
actual running instance. After the new application instance is validated, the
public URL is mapped to the new instance of the application.

Blue-green deployment involves these steps:

 ■ If the blue app exists, manually delete it before you restart.
 ■ Push a new version of the blue app.
 ■ Set environment variables for the blue app.
 ■ Create and bind services for the blue app.
 ■ Start the blue app.
 ■ Test the blue app.
 ■ Map traffic to the new version of the blue app by binding it to the

public host.
 ■ Delete the temporary route for the blue app that was used for

testing.
 ■ Rename the green app to “green app backup.” The backup applica-

tion continues to run so that active sessions are not terminated.
 ■ Rename the blue app to “green” app.

The team completes the blue-green deployment steps by using the Cloud
Foundry command-line interface that is built into the DevOps Services
runtime.

—Joe Loewengruber, 2016

DevOps Adoption Playbook220

and new features; to fail fast and fail often; and to not be concerned with the
environment’s stability due to the experiments that fail or apps and services
delivered that do not behave or perform as desired.

Software-Defined Environments
The way to introduce a layer of abstraction above the infrastructure is to
leverage software-defined environments (SDEs). An SDE allows the Ops team
delivering the Infrastructure as a Service—whether an internal Ops team
or a cloud vendor—to expose the infrastructure as a set of services that any
practitioner in the application delivery lifecycle can access and utilize via a
well-defined set of APIs. SDEs can be delivered by just having a layer virtual-
ization, running on a hypervisor, or a fully functional cloud.

SDEs provide different levels of abstraction by allowing various components
of the environments to be defined and managed as software (Li, 2014). These
include the following:

 ■ Software-defined storage (SDS)
 ■ Software-defined networks (SDNs)
 ■ Software-defined compute (SDC)
 ■ Software-defined management (SDM)
 ■ Orchestration and workload automation

Companies like VMware and IBM are now providing software solutions to
manage entire datacenters, not just environments, referring to their solutions
as software-defined datacenters (SDDCs).

Software-defined environments, while delivering a layer of abstraction
and access to environments via APIs to the environment consumers, also
deliver the capability to automate via software the management of the envi-
ronments to the environment providers. Environment providers can do the
following:

 ■ Version environments by versioning the software defining the
environments.

 ■ Store the environment versions in a repository, allowing for prior ver-
sions of environments to be easily accessible in case they need to be
re-created for defect assessment.

 ■ Change management of the environments. This becomes easier as each
change that Ops makes to an environment—whether it is applying a

Chapter 5 devops plays for driving Innovation 221

patch or making a configuration change—becomes software driven, by
creating a new version of the environment. The changes are applied via
scripts (no logging into admin consoles—it does not scale and cannot
be easily managed). These scripts are versioned with the code and other
artifacts of the application stack being delivered.

 ■ Perform traditional software engineering practices like software con-
figuration management, which can be applied to the code representing
the environments.

 ■ Perform inventory management of the software-defined environments.
This becomes easier as the latest versions of the code representing the
SDE provide the inventory.

 ■ Perform configuration management of the environments. This becomes
easier to manage because here too, all configuration management is
done via versioned code.

Cloud-hosted environments are by definition software-defined. However,
the level of software definition and management may vary by cloud vendor and
the cloud management software stack that is utilized. For example, bare-metal
servers in a cloud may not have fully functional software-defined networks as
they utilize physical hardware (bare metal) on which to provision the server
instances. Similarly, software-defined storage will determine whether the ven-
dor provides object storage or not.

Cloud-hosted devops platform
A cloud-hosted environment, whether delivered as Infrastructure as a Service
(IaaS), Platform as a Service (PaaS), or containers, delivers this level of abstrac-
tion, allowing an Antifragile DevOps platform to be delivered. I will compare
and contrast IaaS and PaaS models, as well as how to deliver a DevOps platform
on either model, later in this chapter.

Cloud Consumption Models
Before I start delving into how a DevOps platform can be built on a cloud
platform, let’s make sure we are on the same page when it comes to cloud
technology. Cloud has become yet another overloaded and misused term. Most
people’s vision of the cloud is still of a public, multi-tenant cloud, offering
infrastructure as a service, allowing organizations to utilize a supplier’s data-
center to get infrastructure services without owning the hardware. First of all,
the cloud is more than just virtualized infrastructure. In fact, the real value of

DevOps Adoption Playbook222

the cloud lies in the ability of organizations to leverage cloud services, beyond
the infrastructure; to deliver innovative business services, fast, and at scale; to
not only lower costs, but to also be able to deliver services that they could not
before these cloud services were available. Cloud consumption models have
also evolved beyond the traditional off-premises infrastructure model. Let’s
start with these consumption models.

espN ANd sports CoNsUMptIoN

Children today will never know the feeling of forcing your eyes to stay
open hoping that John Tudor could finish off the Astros or that Lee Smith
could record a save and notch a win for the original Chris Carpenter. They
will never have to risk getting briars or stickers in their feet fetching the
Arkansas Democrat-Gazette to review the box score of an extra inning
Cardinals-Reds game. The reason they will never know these feelings
of anticipation is thanks, in large part, to the Entertainment and Sports
Programming Network—better known as ESPN.

I will spare readers the birth and history of ESPN, I’m gonna focus instead
on its effect on how we view, consume, and devour sports 24/7. Today there
are hundreds—probably thousands—of ESPN platforms across every imag-
inable medium. For starters there are their multiple television channels such
as ESPN, ESPN2, ESPNews, and ESPN Classic. Then there are their websites,
espn.com, espn360.com, and espnradio.com and of course their wildly popu-
lar radio network. Each offers us never-ending coverage of scores, transactions,
rumors, opinions, insight, and analysis. If those options were not enough, they
have multiple apps such as the Score Center, Sports Center, and ESPN Radio
apps, just to name a few. With the advent of Twitter, you can even follow your
favorite ESPN personality there so that you really never have to do without
sports if you don’t want to. The reality is most of us do not want to do without
sports. It is a simple matter of supply and demand. ESPN and other sports
networks—supply us with endless selections on a sports buffet because we
demand it. I am not saying this is a bad thing—as a sports fan I enjoy it—I am
just in awe of how far the marriage of sports and technology has come from
the days when I was adjusting the antenna on my sometimes-color television,
before we had cable and when only the wealthy could afford satellite T.V.

—Antonio Lopez (Lopez, 2014)

Chapter 5 devops plays for driving Innovation 223

Given how new the cloud is, you can’t even say, “This is not your father’s
cloud,” or (like the author of this article) talk about how “children today
will never experience” the feeling of provisioning a server instance on the
cloud of yesteryear. The rate of change in cloud technology is moving at such
breakneck speed and acceleration that it is becoming almost impossible for
many organizations to keep up. The ever-evolving nature of cloud technology
has also resulted in a significant evolution in the consumption models of the
cloud. No longer is choosing how you want to consume the cloud as simple as
choosing between “Private” and “Public,” like it was in the good not-so-old-
days. There is a myriad of options to choose from today, and the decision is not
just about cost or location, but many other factors. Choosing the right model,
or in most cases, all the models to create what is referred to as a hybrid cloud,
will determine what components of the environments your DevOps platform
will exist on and will need to support.

Private versus Public This is probably the first significant change in how
organizations consume the cloud. When the cloud began, there was only the
public cloud—located in the vendor’s datacenter, managed by the vendor, and
multi-tenant. This was the only model offered by early cloud providers like
Salesforce.com (launched in 1999) and Amazon Web Services (launched in
2002). Even today, the general assumption is that when you mention the word
cloud, you mean a public cloud. As cloud technology evolved, cloud manage-
ment software became available that allowed organizations to set up a private
cloud in their own datacenters. This was a self-managed cloud, located within
the organization’s firewall, in their own datacenter. It was on-premises (on-prem
for short), running on their own hardware, and it was, of course, single tenant.
As a result, private was always thought of as on-premises.

Private and public became the two available choices. A decision on which
one to choose was based on many factors: cost, data location, single or multi-
tenant, ability to support and self-manage an in-house cloud, and so on. Most
organizations chose the private cloud for mission-critical applications that were
highly regulated and had strict data residency and privacy concerns, which
required data to be kept on-premises. Other applications were deployed lever-
aging the public cloud, which offered a lower cost and no need for new hard-
ware in their own datacenter. Most large organizations ended up with a hybrid
cloud model that had both public and private cloud hosting and traditional,
on-premises hardware-hosted applications.

DevOps Adoption Playbook224

A recent evolution in consumption models has evolved to completely disrupt
the notion that mapped public to off-premises and private to on-premises. This
evolution has resulted in two new types of consumption: dedicated and local.
There are hence three options available now–Public, Dedicated and Local (see
Figure 5-5).

Dedicated Cloud Cloud technology has reached a state where cloud ven-
dors are able to provide a single-tenant, managed cloud in their datacenters.
IBM, a pioneer in delivering this model, refers to it as a dedicated cloud. So,
now you have a cloud that is “dedicated” to your organization, but still vendor
managed, and remaining in a vendor’s datacenter (off-premises), running on
the vendor’s hardware, but single-tenant. It is thus a private cloud, but located
off-premises, and vendor managed. Thus, you can think of dedicated as private,
managed, off-premises cloud-as-a-service.

Local Cloud The next evolution in how organizations can consume the cloud
is even more disruptive. Organizations, especially those with highly regulated
applications or with strict privacy concerns, have typically wanted the luxury and
comfort of having the cloud on-premises. With an on-premises cloud, there are no
issues with where the client data is; no issues with managing compliance related
to running critical applications in someone else’s datacenter; no issues with hav-
ing to “tunnel” into another network to access applications and infrastructure.
However, the challenge with having an on-premises cloud has always been the
skills needed and risk associated with self-managing the cloud. I am talking
about IT organizations that have excelled in managing hardware infrastructure,
now managing the cloud and the constantly evolving technology stacks that need
to be managed and maintained. I am talking about running and managing an
efficient cloud with all the relevant cloud services with their own SLAs, which
are required to have an on-premises cloud deliver the promise of a public cloud.

Such a consumption model delivering the best of both worlds is now avail-
able through what is known as a local cloud. This is a cloud that is in a client’s
own datacenter (on-premises); it is, however, managed by the vendor who is
delivering the cloud; and, it is, of course, single-tenant. In such a model, the
organization consuming the cloud continues to just manage the hardware
infrastructure on which the cloud is delivered. The cloud, though, is managed
by the vendor. This is achieved by a tether that allows the vendor to initially
deploy the cloud itself remotely and continue to periodically monitor and
update the cloud software stack, as and when needed. (IBM, which has also
pioneered this model, calls their tether technology a relay.) The client organiza-
tion coordinates the timeframe for when updates will be done, allowing them

Chapter 5 devops plays for driving Innovation 225

Choosing the right consumption model is not trivial. Consuming a pub-
lic cloud is by definition non-sticky—it is (relatively) easy-on/easy-off from
a public cloud. Dedicated is also the same way, because you are essentially
leveraging a public cloud that has now been dedicated to your organization.
It is similar to renting a stand-alone building, as opposed to an apartment in
a multi-tenant building. Local, on the other hand, is different. Understanding
the division of duties between your organization and the vendor is critical.
Understanding the change management processes is essential. You are forming
a partnership with the vendor that is more complex and, in turn, much more
valuable than using a public cloud.

Self-Managed versus Vendor-Managed As you choose which model
is the best for your DevOps platform, the first decision point to be made is the
most critical: Are you looking for a vendor-managed cloud environment, or
will you self-manage? If you prefer the latter, then the right model is a tradi-
tional, on-premises private cloud. The organization buys the cloud platform
technology from a vendor, trains its people, prepares its infrastructure in the
datacenter, and builds the platform leveraging the delivered cloud.

If you prefer the vendor-managed model, then the organization needs to
next choose between an on-premises and off-premises cloud platform. This
decision of a managed versus self-managed cloud has to be made first. It
impacts not only which cloud is selected but also IT staffing. If an organiza-
tion is challenged by its ability to manage a cloud with its own IT staff, due to

to control outage windows, if any. It is thus a vendor-managed private cloud,
which is, however, on-premises. You can therefore think of local as being a
private, managed, on-premises cloud-as-a-service.

Private

On-premises IT

Public

Figure 5-5: Cloud consumption models

DevOps Adoption Playbook226

INFrAstrUCtUre As A servICe

The capability provided to the consumer is to provision processing, storage,
networks, and other fundamental computing resources where the consumer
is able to deploy and run arbitrary software, which can include operating
systems and applications. The consumer does not manage or control the
underlying cloud infrastructure but has control over operating systems,
storage, deployed applications, and possibly limited control of select net-
working components (e.g., host firewalls).

—NIST, U.S. Department of Commerce, 2011

skills or headcount, or it is unsure of its ability and desire to be able to deliver
the services and associated SLAs its clients are expecting from a cloud, then it
should consider a managed cloud. This decision was not an option until now
because all managed cloud options were available only on an off-premises
cloud. With the advent of local cloud offerings, both for IaaS and PaaS, this is
no longer the case. An organization can get an on-premises cloud, as a man-
aged service, and build a DevOps platform on it.

Once the cloud consumption model has been chosen, the next decision
set is to determine whether the right cloud adoption model is Infrastructure
as a Service, Platform as a Service, or containers. When you make this deci-
sion, you are beginning to choose the services that make up the DevOps
platform. How does the organization want those services delivered? Will
they be services built with DevOps tools running on top of the IaaS cloud,
or is it better that they be a part of the actual platform being delivered? Let’s
examine these options next.

Infrastructure as a service

Figure 5-6 best illustrates the definition described by the U.S. National
Institute of Standards and Technology (NIST). It shows the components that
are cloud provider-managed in an IaaS offering, compared to those that are
not. The cloud provider here may be the cloud vendor, or the organization’s
own Ops team, depending upon whether the cloud is vendor-managed or
self-managed.

Chapter 5 devops plays for driving Innovation 227

Figure 5-6 also visually describes what distinguishes the two cloud adoption
models—IaaS and PaaS—that is, how much of the stack is managed by the user
(or client) versus how much is managed by the cloud platform provider, which
again can be a vendor or an organization’s own Ops team. I will discuss deliv-
ering a DevOps leveraging a PaaS later in this chapter, in the section on PaaS.

The goal of leveraging an IaaS cloud platform for these environments is to
add the layer of abstraction that I discussed before between the practitioners
delivering software and the infrastructure. They see one simplified view of the
infrastructure, while under the surface it may have all the classic challenges and
need the same levels of maintenance that any hardware infrastructure needs.

It is important to note that it is not uncommon to see organizations take
a hybrid approach to adopting a cloud platform. While they may leverage a
public or dedicated off-premises cloud for Dev-test environments, due to lower
costs, and no data-residency (where the data is stored) needs, no real produc-
tion data is needed for Dev-test, so organizations may choose to keep produc-
tion environments on-premises. (See the section “Test Data Management”
in Chapter 4 for more information.) This brings the applications running in
production closer to the data sources and also allows for better management

Infrastructure
as a Service

Applications

Cl
ie

nt
 M

an
ag

es

Cl
ie

nt
 M

an
ag

es

Vendor M
anages in Cloud

Vendor M
anages in Cloud

Data

Runtime

Middleware

O/S O/S

Virtualization

Servers

Storage

Networking

Platform
as a Service

Applications

Data

Runtime

Middleware

Virtualization

Servers

Storage

Networking

Figure 5-6: Iaas versus paas

DevOps Adoption Playbook228

Brokerage and Catalog The proliferation of cloud vendors, and the accep-
tance of hybrid cloud adoption, leveraging multiple vendors and multiple cloud
adoption models, has given rise to a new capability area in the cloud stack: cloud
brokerage. A football coach may have multiple quarterbacks,2 running backs,
and receivers on his bench, whom he can choose from to best match the play
he is running—say, a heavier quarterback, running back, and full back for a
“third and goal” play. Similarly, cloud brokerage tools like IBM cloudMatrix and

of compliance requirements related to data residency. With the evolution of
models like dedicated clouds, these concerns are becoming less of an obstacle
to adopting off-premises clouds, even for production.

IaaS Capability Stack
Creating and managing an IaaS offering requires that you first create the
necessary architecture for an IaaS cloud. You need the following capabilities,
also captured in Figure 5-7:

 ■ Brokering and catalog
 ■ Service orchestration and integration
 ■ Cloud orchestration
 ■ Deployment orchestration

Brokering and Catalog

Cloud Orchestration

Deployment Orchestration

Cloud Providers

Service Orchestration

Figure 5-7: Iaas capability stack

2 Multiple first-string quarterbacks are more common in college football than the NFL.

Chapter 5 devops plays for driving Innovation 229

RightScale Cloud Comparison allow organizations to choose the right cloud for
the application being deployed, from a catalog of available options. This deci-
sion can be made in real time, based on the application’s needs for computing,
storage, network, and memory, and the capability and pricing available from
each cloud option, in-house or through an external vendor.

Service Orchestration and Integration Service orchestration, or ser-
vice integration, is the set of capabilities needed to integrate services being
delivered by the various clouds and the applications running across multiple
clouds. It is thus the cloud service integration layer. The core component in this
layer is business process management tooling for managing the orchestration and
business workflows of the services being integrated and delivered to meet the
business requirements. The tools for service orchestration and integration fall
into the broad category of business process management tools, which utilize
workflows to capture the orchestration and business rules of managing the
various services and their interactions. Languages such as Business Process
Execution Language (BPEL) and Business Process Modeling Notation (BPMN) are
standards used to capture these orchestration workflows and business rules.

Tools for API and service management—for monitoring, security, metering
and billing, and so on, of APIs and services—also fall into this space.

Cloud Orchestration

CoAChes orChestrAtINg the BIg gAMe

Fandom has a perception of coaches preparing for the big game. It involves
emotion and energy. This is true, but emotion and energy are mere factors,
such as two bees in a hive. Much more is involved. How a coaching staff
chooses to prepare a team for a monster and epic rivalry game that has
taken on a grudge match exterior is important, very important. Just like
conductors decide on how to play the bizarre Symphonie Fantastique by
Berlioz, coaches must set a total tone for preparing a team for a game such
as Michigan and Notre Dame. Note this: the preparation began long before
Monday, when exactly is anyone’s guess….

There is no tolerance for any distractions in the game preparation period,
excepting an occasional “boys will be boys” disagreement on the field. Even

continued

DevOps Adoption Playbook230

these episodes can be manipulated by the staff and used for further motiva-
tion. There is no need to worry about a lack of focus if everyone buys into
the mission. The orchestrators (coaches) go bonkers when a player strays
off the path and causes some sort of unnecessary distraction, typically an
overactive mouth. The coaches do not want the opponents to have further
motivation; there is already an ample supply.

—Wolverine, 2014

Cloud orchestration involves the management of the automation of various
components and services being delivered by the cloud environments. The goal
of orchestration is to manage the provisioning and de-provisioning, resource
allocation, configuration, and workflow of all the components in the cloud
technology stack and all the infrastructure services being delivered by the
cloud. One way of defining orchestration is to look at it as the codification of
the best practices and workflows for managing the IaaS cloud.

Capabilities of cloud orchestration include the following (Peranandam,
2012):

 ■ Integration of cloud capabilities across heterogeneous environments and
infrastructures to simplify, automate, and optimize service deployment

 ■ Automation to allow a lower ratio of administrators to physical and
virtual servers

 ■ Automated high-scale provisioning and de-provisioning of resources
with policy-based tools to manage virtual machine sprawl by reclaim-
ing resources automatically

 ■ Ability to integrate workflows and approval chains across technology
silos to improve collaboration and reduce delays

 ■ Real-time monitoring of physical and virtual cloud resources, as well
as usage and accounting chargeback capabilities to track and optimize
system usage

 ■ Prepackaged automation templates and workflows for the most com-
mon resource types to ease adoption of best practices and minimize
transition time

IBM Cloud Orchestrator and VMware vRealize are two examples of market
leaders in the cloud orchestration space.

continued

Chapter 5 devops plays for driving Innovation 231

Orchestration, along with the architectural definition, may be captured in
cloud patterns. A common standard of patterns is OpenStack Heat patterns,
called Heat Orchestration Templates (HOTs).

While they have matured significantly in the last couple of years, pat-
terns for defining and codifying the cloud are not new. IBM was a pioneer in
this space when its proprietary cloud patterns made their first appearance
with the creation of the CloudBurst appliance in 2009, which in 2011 evolved
into IBM Workload Deployer (IWD). These patterns, called Virtual System
Patterns (vSys), have also evolved and are today supported primarily by the
IBM PureApplication Systems (PureAS) offerings. The vSys patterns at IBM
are being gradually phased out and replaced with OpenStack Heat as the
standard. Outside IBM, other patterns also evolved. Of these, Amazon Web
Services (AWS) CloudFormation, released in 2011, is the most popular, given
the expansive footprint of Amazon.

From a standards perspective, AWS CloudFormation inspired the devel-
opment of a community standard in the OpenStack HOT templates, sup-
porting the OpenStack Heat provisioning engine. Most cloud vendors today
support OpenStack Heat directly or provide support for OpenStack APIs,
allowing for Heat to provision environments on these non-OpenStack
clouds.

Here are some examples of components of the Cloud that are defined and
included in a pattern:

 ■ Pre-installation on an operating system
 ■ Pre-integration across components
 ■ Pre-configured and tuned middleware
 ■ Pre-configured monitoring
 ■ Pre-configured security
 ■ Lifecycle management

CloUd CoMpUtINg pAtterN

[A] repeatable solution that is based on specific sets of virtual images, mid-
dleware, applications, and runtime configurations. The result of deploying
a pattern is a configured, tuned, and optimized application environment.

—Chiara Brandle, 2014

DevOps Adoption Playbook232

As a result, patterns are, at a bare minimum, composed of the following:

 ■ Base images of operating systems
 ■ Binary files to deliver applications
 ■ Automation scripts (for example, Chef, Puppet, SaltStack, or Ansible)
 ■ Orchestration templates (for example, OpenStack Heat or Amazon

CloudFormation)

The future of patterns as you know them is itself being challenged with
the evolution of containers. While containers are not an Infrastructure as a
Service in the classic sense of the definition, their lightweight and portability
are resulting in their acceptance as an alternative to the traditional approach
to IaaS, and even more so as an alternative to PaaS. While several container
technologies are emerging, the leader in the container space is, of course,
Docker. I will discuss containers in more detail later in this chapter.

Deployment Orchestration I discuss deployment orchestration at
length in Chapter 4. The key thing to note is whether the cloud environment
is being provisioned independently of the applications and the applications
are deployed on top of those environments or whether you are deploying
the applications and the environments as one full-stack deployment process.
The pattern in each case will be defined differently, as environment patterns
and application patterns, or one full-stack pattern. As I describe in Chapter
4, tools like IBM UrbanCode Deploy have capabilities to design and provi-
sion full-stack environments using OpenStack Heat patterns, defined as
application blueprints.

openstack heat as an Abstraction layer
One of the benefits of leveraging OpenStack Heat is that it can be used as an
abstraction layer allowing for the environments to be cloud agnostic—that is,
the ability for a single environment, captured in a Heat template, to be provi-
sioned on multiple clouds. In fact, complex environments composed of multiple
templates can be provisioned across multiple clouds from multiple vendors,
as shown in Figure 5-8. This support also allows for cloud portability—a holy
grail of the Cloud. An environment provisioned on one cloud today can be
provisioned on another cloud tomorrow, if that is deemed better (see the sec-
tion “Brokerage and Catalog”).

IBM UrbanCode Deploy is an example of a tool that supports such a para-
digm. Using UrbanCode Deploy’s Designer, a single Heat document (HOT) can

Chapter 5 devops plays for driving Innovation 233

Figure 5-8: openstack heat supporting multiple clouds

Firewall

Load Balancer

Web
Servers

App
Servers

Database
Servers

Virtual
Datacenter

Private Public

As my friend Sudhakar “Freddie” Frederick mentions in the blog post that
I cited here, portability across clouds is not fully addressed yet, even with
OpenStack. Some things in some clouds will simply not have an equivalent
in other clouds, so the more special, cloud-specific services that are used, the
less portable the HOT document becomes.

platform as a service

plAtForM As A servICe

The capability provided to the consumer is to deploy onto the cloud infra-
structure consumer-created or acquired applications created using program-
ming languages and tools supported by the provider. The consumer does not
manage or control the underlying cloud infrastructure including network,
servers, operating systems, or storage, but has control over the deployed
applications and possibly application hosting environment configurations.

—NIST, U.S. Department of Commerce, 2011

be created to target any of the multiple clouds supported by the Heat engine
included in UrbanCode Deploy (Frederick, 2016).

DevOps Adoption Playbook234

Like most terms in the IT industry (or to really generalize, in the human
communication medium known as language), PaaS is overloaded, overused,
and misunderstood. A quick web search or even a visit to the Wikipedia page
on PaaS proves this point.

Defining PaaS
The most critical section of the NIST definition of PaaS, which differentiates
PaaS from an “Infrastructure as a service” consumption model for the cloud,
is as follows:

… The consumer does not manage or control the underlying cloud
infrastructure including network, servers, operating systems, or
storage, but has control over the deployed applications and possibly
application hosting environment configurations.

Figure 5-6 best illustrates the differences between IaaS and PaaS. As you can
see in the figure, what distinguishes the two cloud adoption models—IaaS and
PaaS—is how much of the stack is managed by the user (or client) versus how
much is managed by the cloud platform provider (which might be an internal
Ops team or an external cloud vendor). It is important to highlight two things:

 ■ Every capability in the stack is available as a managed service; this
would be a shared, multi-tenant service available to users, with the
underlying implementation abstracted from the user.

 ■ The client/user only has to be concerned about managing their own
applications, data, and user access, leveraging the services available on
the platform, which manages the rest.

Platforms as a service may be either public (IBM Bluemix, Pivotal, Salesforce
Heroku, Google App Engine, and so on) or private (hosted Cloud Foundry; a
self-built and hosted platform). Organizations may also build their own hosted
and managed environments leveraging multiple technologies and self-hosted
on a private cloud. For a private instance, of course, the organization hosting
it in their own datacenter would be responsible for managing all the ser-
vices hosted on the platform. Building a PaaS leveraging self-managed Cloud
Foundry from Pivotal would be a good example.

Chapter 5 devops plays for driving Innovation 235

DevOps Services on PaaS
When you look at DevOps on PaaS, you have to look at the services that need
to be hosted on the platform in order to implement a DevOps application
delivery pipeline on the platform. If you look at a DevOps application delivery
pipeline and the core components that make up the delivery pipeline, each of
the components needs to be available as a service in order to provide a com-
plete DevOps on PaaS solution.

Revisiting the list of capabilities that make up a delivery pipeline, these all
need to be made available as services on the PaaS:

 ■ Source code management
 ■ Build
 ■ Continuous integration
 ■ Deployment automation
 ■ Middleware configuration
 ■ Automated Testing

These are what you refer to as DevOps services, shown in Figure 5-9. If
you pay attention, you will notice that this is a subset of the list presented in
the IaaS section. That is because a PaaS includes the capabilities related to the
environment’s provisioning and configuration management as core services
of the PaaS. The entire goal of the PaaS is to make environments that are
abstracted away from the platform consumers.

Developer

Running Application
(Dev Space)

Running Application
(Test Space)

Test as a Service Monitoring as a Service

Running Application
(Prod Space)

Build as a Service Deploy as a Service

Create
and edit Build

Deploy
and test Deploy

Publish
build

Promote

Test Monitor

Dev as a Service

Figure 5-9: devops services

DevOps Adoption Playbook236

Fully functional, managed PaaS offerings like IBM Bluemix include the
DevOps services as an inherent part of the platform. Here are some of the
DevOps services on Bluemix:

 ■ Git as a service, and GitHub Enterprise as a service
 ■ Web-based IDE
 ■ Agile planning and tracking, team collaboration as a service
 ■ Delivery pipeline as a service
 ■ Globalization as a service
 ■ Deployment automation as a service
 ■ Auto scaling as a service
 ■ Performance monitoring as a service
 ■ Alert notification as a service

These capabilities, working in concert, provide a continuous delivery pipe-
line on IBM Bluemix PaaS, as shown in Figure 5-10.

Figure 5-10: Bluemix devops delivery pipeline (IBM)

Chapter 5 devops plays for driving Innovation 237

DevOps as a Service
The value proposition for adopting a PaaS platform is self-evident. For any
organization looking to adopt DevOps, a PaaS offering that includes DevOps
services allows you to adopt DevOps at a very low cost of entry. You do not
need to craft a delivery pipeline and implement the entire continuous delivery
tool chain. Integrations, hosting, servicing—these are not your problem. Pay-
as-you-go, and allow for scale.

PaaS with Cloud Foundry
You cannot leave the topic of PaaS without mentioning Cloud Foundry,
which has without a doubt become the standard for delivering a PaaS. Cloud
Foundry is an open source PaaS that is now managed by the Cloud Foundry
Foundation. The foundation’s board is made up of representatives from major
Cloud Foundry adopters and vendors like IBM, Pivotal, HP, EMC, SAP, and
VMware, who support or provide PaaS platforms based on Cloud Foundry.
IBM Bluemix Public PaaS, as of the writing of this book, is the largest instance
of a Cloud Foundry–based PaaS.

The true value of Cloud Foundry, other than being open source, is
in the variety of choices it provides to empower developers, and PaaS
providers:

 ■ Development frameworks and languages. Cloud Foundry is truly poly-
glot in nature, supporting all major languages, either intrinsically or
through community-added buildpacks.

 ■ Application services. In addition to the core application services
included in Cloud Foundry (like MySQL, MongoDB, PostgreSQL,
Redis, and RabbitMQ), vendors such as IBM have added several oth-
ers, including WebSphere Application Server, DB2, Blockchain, MQ
Light, and so on.

 ■ Multiple clouds. Organizations can choose which cloud to deploy Cloud
Foundry on. Vendors like Pivotal allow deployment on multiple clouds,
including AWS and Microsoft Azure. IBM, which offers only managed
PaaS, deploys Bluemix on SoftLayer (the IBM public cloud), VMware,
and OpenStack.

DevOps Adoption Playbook238

Athletes like Deion Sanders are unique. They can excel in pretty much any
sports arena. Their athleticism is agnostic of the sport being played. Teach
them the rules and the basics of how to play, and coach them on which plays
to execute, and they are good to go.

Like these unique athletes, who appear to be “portable” across sports, con-
tainers too are agnostic to where they run, and are portable across environ-
ments. The idea of containers itself is not new. Linux has had containers since
2008. Linux containers allow isolation at the CPU, memory, block I/O, and
network resource level, while sharing the operating system (OS) kernel. This
allows processes to run independently, while not having the overhead that
virtual machines (VMs) have, where each instance has a full local OS. This
allows containers to be much more lightweight than VMs, allowing them to
run on a server at a much higher scale than VMs. Docker was started as an
open source project to make Linux containers much more portable, allowing
them to be moved across any Linux instance, on any physical server, or in
the Cloud. Since their release in 2013, Docker has become one of the most
successful open source projects ever, with over 100 million downloads of the
Docker engine (Martin N., 2015).

In a nutshell, the key benefit of containers is that they provide a standard
way to package an application, its configurations, and all its dependencies, so

deIoN sANders: hoMe rUNs ANd toUChdowNs

Nicknamed “Prime Time” and “Neon Deion,” Sanders played nine years
in baseball, and will probably be a Hall of Fame football player when he
becomes eligible.3 While he was a great football player—an eight-time Pro
Bowl player who won two Super Bowls—he was also an above-average
baseball player and probably would have been better had he played the
sport full-time.

Sanders is the only man ever to play in both the Super Bowl and the
World Series, and he is the only man ever to hit a home run and score a
touchdown in the same week.

—Timmons, 2008

3 Deion Sanders was inducted into the Football Hall of Fame in 2011, three years after the
quoted article was written.

Containers

Chapter 5 devops plays for driving Innovation 239

that it becomes portable across environments. The unique application code
inside the container is isolated from the environment outside the container.
It is almost DevOps nirvana. The developers do not need to be concerned with
what the environment is outside the container. They focus on packaging their
application in the standardized container image that is best for their applica-
tion. Similarly, the Ops team does not need to worry about the changing code,
configurations, and dependencies of the applications inside the container.
They just need to focus on running the standardized, approved containers on
their environment.

DevOps Platform with Containers
The tools that organizations use to build their application delivery pipeline can
be deployed in containers, making them available as services to leverage the
delivery of the application delivery pipeline capabilities, as I have discussed
previously. Alternatively, the tools of the application delivery pipeline can be
deployed anywhere outside of containers in a traditional manner to develop
the applications and services, and just packaged in containers when they need
to be deployed to test, pre-production, and production environments. In either
scenario, the key benefit of containers is to provide a standardized set of dev-
test-prod and other environments where the application can be deployed in
portable containers and promoted from one environment to another without
any compatibility concerns or configuration management to be done.

When it comes to the application delivery pipeline, the only change that
needs to be made is to the build process, which now includes the step of pack-
aging the application in the container. Modern build tools, like Jenkins and
IBM UrbanCode Deploy, all support the following capabilities:

 ■ Building a Docker image from a Dockerfile
 ■ Publishing a Docker image to a registry

Once built, the Docker container can be deployed to the desired environ-
ment, leveraging the Docker tooling or, if a higher level of deployment capa-
bility is needed, a deployment automation tool like IBM UrbanCode Deploy.

It is important to note that there are several container technologies in the
market, like CoreOS Rocket and VMware Photon containers. However, Docker
is by far the market leader, with significant market adoption over the alterna-
tives. In April 2016, the Open Container Initiative was launched by dozens of
vendors, to standardize container formats and runtimes.

DevOps Adoption Playbook240

Container Orchestration
The sheer scalability of containers results in multiple instances of multiple
containers being deployed. Managing these containers, across their lifecycle,
involves several types of tasks and capabilities, including the following:

 ■ Deployment
 ■ Updates to containers
 ■ Provisioning
 ■ Container discovery
 ■ Monitoring
 ■ Scheduling
 ■ Clustering and scaling
 ■ Failover
 ■ Policy management
 ■ Constraint management

As a result of the challenges presented to provide these capabilities, several
technologies have emerged to manage orchestration of containers:

 ■ Docker Swarm. Docker is beginning to provide support for large-scale
clusters of Docker containers with Docker Swarm, leveraging the core
Docker APIs to manage a pool of Docker engines, rather than one at a
time.

 ■ Kubernetes. The orchestration technology in the container space get-
ting the most traction is Kubernetes for Google. Google claims that it
manages over two billion containers on a daily basis using Kubernetes,
which provides some serious credibility. Kubernetes architecture is
that of a master managing multiple minions. The master runs the
management and orchestration processes to manage all the minions.
These minions in turn has multiple collections of containers called
pods deployed to it.

 ■ Mesos: Mesos is an open source project that existed independent of
Docker to manage running complex tasks on a shared pool of servers.
It has since added support for Docker, allowing for container man-
agement. Similar to Kubernetes, Mesos has a master-slave model. The
master runs the high-level tasks and delegates tasks to the slaves, which
manage the containers. Higher-level control, scale, and high availability

Chapter 5 devops plays for driving Innovation 241

are provided by software called ZooKeeper, which can coordinate a
collection of master nodes. ZooKeeper informs all masters and slaves
which master is the current leading master.

Container as a Service
As an alternative to PaaS, Container as a Service (CaaS) offerings have become
popular. Here, like a PaaS, the environments are available as a service and
managed by internal Ops teams or by a vendor. Developers just need to
run the containers they build on the service, without any concerns for
the environment setup, management, or configuration to be done. Unlike
a PaaS, a CaaS does not inherently provide any application or middleware
services. If the application needs any such services, beyond the CaaS, they
need to deploy a container that runs the service on the CaaS or leverage
an externally running service, directly from the application that needs to
consume it.

Popular CaaS services include Docker Cloud (previously Tutum), IBM
Bluemix Containers, Amazon ECS, CoreOS Tectonic, Rancher from Rancher
Labs, and Google Container Engine.

play: deliver Microservices Architectures

regUlAr teAMs versUs speCIAl teAMs

Former NFL safety and linebacker Coy Wire played nine seasons in the
league and contributed as a core guy on special teams. He acknowledged
that covering kicks isn’t high on everyone’s list when they come into the
NFL but talked about the importance of adapting to a new role as a pro.

“Most of the guys who star on special teams in the NFL never played a
down of it in their college career. So, you have to be like a chameleon and
adapt to the new circumstance,” Wire said. “Every special teams player
wishes they were a full-time starter in the NFL. But to truly buy into the
special teams units and excel on them, you have to put your ego aside and
embrace the new role that you play for your team.”

—Bowen, 2015

DevOps Adoption Playbook242

From a DevOps perspective, delivering small batches is a core theme—as
presented in Chapter 4. The value proposition of small batches is self-evident:
small changes delivered frequently, reducing the cycle time to feedback, and
minimizing the impact of change. Testing and security validation becomes
easier, as you validate small changes more frequently. Deployment becomes
easier as you are deploying smaller sets of changes. Change management,
similarly, becomes less complex. DevOps nirvana.

From an architectural perspective, though, delivering small batches is not
always viable. Most enterprise applications are monolithic in nature. They
have a few large components, each of which are delivered as one deployable
asset:

 ■ User interface (UI), which is typically one component for each UI type—
web page, mobile app, API for third-party apps, and so on

 ■ Database, which is typically spread across multiple databases running
on servers

 ■ Server-side components, which may be multiple executable components,
although if it is more than one component, the components are large
and few in number

So, from a deployment perspective, you have a minimum of three large
monoliths to deploy. All of these components may be developed by multiple
teams, potentially using short sprints that deliver small batches of changes
to code with each sprint. However, all these changes need to be integrated
and built into the single large deployable component. This defeats the
purpose of delivering small batches. While each delivery cycle delivers
small, incremental changes to the deployable component, the component
itself has to be delivered as an all-or-nothing deployment of the monolithic
component.

The next challenge from a deployment orchestration perspective is
deploying multiple instances of the components. If any component is to be
scaled, it can only be scaled horizontally by deploying multiple instances
on multiple servers. Here again, even if just a part of the functionality
needs to be scaled—say, the shopping cart of an eCommerce website—
the monolithic architecture requires that multiple instances of the entire
component be deployed. The monolithic component is the lowest atomic
deployable asset.

Chapter 5 devops plays for driving Innovation 243

The solutions to both delivering small batches and scalability (Figure 5-11)
are effectively addressed by a microservices approach. The key characteristics
of microservices are defined by Martin Fowler as follows:

 ■ Componentization via services. Microservices allow for the development
and delivery of componentized services, with well-defined APIs, which
can be composed together to deliver complex services.

Microservices Architecture

Monolithic App Microservices

Scaling Scaling

Figure 5-11: scaling with microservices

the MICroservICes ArChIteCtUrAl stYle

[T]he microservice architectural style is an approach to developing a single
application as a suite of small services, each running in its own process and
communicating with lightweight mechanisms, often an HTTP resource API.
These services are built around business capabilities and independently
deployable by fully automated deployment machinery. There is a bare mini-
mum of centralized management of these services, which may be written in
different programming languages and use different data storage technologies.

—Fowler, 2014

DevOps Adoption Playbook244

 ■ Organized around business capabilities. The goal of microservices is
to decompose the monolithic architectures into smaller services by
business function. As per Conway’s law, discussed in Chapter 4, teams
tend to put business logic into architectural components that they are
responsible for, even if they are not architecturally the right places
to put it. Each business capability that needs to be delivered is archi-
tected as independent services, which can be developed and delivered
independently.

Developing microservices around business capabilities also
addresses the scalability challenge. The need for scale typically
comes around certain business capabilities, just like the shopping
cart I mentioned before, or, say, the check balance capability for a
bank around the end of the month. Having distinct microservices,
or a set of microservices for individual business capabilities, allows
only those microservices that are needed to be scaled horizontally
when the need arises, without impacting the deployment of other
microservices.

 ■ Products not projects. Products are not transient, but projects are. The
same team should own the microservices through their lifecycle, rather
than there being a series of projects executed by different teams, on a
set of components, with no ownership from the project team through
the component’s lifecycle.

 ■ Smart endpoints and dumb pipes. Microservices are built using simple
REST APIs or a lightweight message bus, as their architectural interfaces.
This allows for microservices to communicate with other microservices,
as well as external services and applications, in a lightweight manner
that can be easily orchestrated and managed.

 ■ Decentralized governance. This allows for teams developing and deliver-
ing microservices to utilize the best platform and tools for the tech-
nology they need to deliver. Microservices are independent from each
other, communicating through a well-defined API. They do not need
to have a standardized development language or technology stack for
their implementation.

 ■ Decentralized data management. If the application layer is being archi-
tected into small components, it is only logical that the data schemas
of the persistence layer need to match the requirements of this archi-
tectural model. You no longer need a data store that supports one single
monolith accessing the data.

Chapter 5 devops plays for driving Innovation 245

 ■ Infrastructure automation. Orchestrating continuous delivery of a large
number of microservices requires tooling to support their scale and
delivery and their lifecycle management needs. Leveraging a PaaS or
containers to manage their deployment is imperative.

 ■ Design for failure. Designed for antifragility from the ground up,
microservices, through their ability to be small, independently run-
ning services, facilitate the design of Antifragile systems.

 ■ Evolutionary design. Architecting an application leveraging microservices
has the additional impact of not locking the developers into an applica-
tion architecture from the beginning, as is typically the case with mono-
lithic apps. The architecture and design can evolve, as microservices can
be changed, replaced, and removed to enhance the architectures on the
rapid feedback cycle time, which comes from delivering small batches.

12-Factor App
The microservices approach, while being focused on architectural styles for
modern application design and development, has also spawned methodologies
on how to develop and deliver such applications. Of these, the most popular,
called the 12-Factor App, was developed by the folks at Heroku, a PaaS service
provider now owned by Salesforce.com. The 12-Factor App methodology was
developed by Heroku to help organizations develop and deliver cloud-native
apps, which are apps designed exclusively for the cloud. (I will discuss these
in more detail later in this section.) However, the microservices architecture
and the 12-Factor App methodology are extremely well aligned, resulting in
the 12-Factor App methodology becoming a common approach to develop
and deliver microservices.

Let’s take a quick look at the 12-Factor App concepts and best practices, of
which there are obviously twelve (Koffel, 2014):

 1. Codebase. Have all your code in a single source code management (SCM)
system. It can, of course, be a federated and distributed SCM system like
Git.

 2. Dependencies. From application source code to infrastructure code,
ensure that all dependencies are declared and isolated.

 3. Config. Configuration variables change from environment to environ-
ment, or may change with time, independent from the application itself.
Store these variables in the environment and not in the application.

DevOps Adoption Playbook246

 4. Backing services. Applications utilize external backing services that they
consume in order to run—from databases to caches to queuing systems.
Address these via simple endpoints, which abstract the app from the
service.

 5. Build, release, run. Make build-release-run independent stages in the
application delivery pipeline, with automation to promote the app from
one stage to the other.

 6. Processes. Build services in the application to run as stateless processes.
All stateful content of the app should be stored in a data store that is
external to the actual service. This allows the app to become Antifragile.
If one service instance dies, another instance can replace it without
losing any state-related information.

 7. Port binding. Make all application services addressable by applications
and services that consume the service as a URL. This, in a way, extends
Factor 4.

 8. Concurrency. This factor is completely in line with the scalability chal-
lenge presented when introducing microservices. Ensure that services in
the app are capable of having multiple instances running concurrently.
This allows the individual granular services to be scaled without scaling
the entire app.

 9. Disposability. Maximize making the app Antifragile by designing
services for “fast startup and graceful shutdown.” In simpler terms,
allow services to start up and shut down rapidly, independent of other
services. This requires that all the services that a service in the app
consumes, and needs to be present in order to start up fast, are highly
available and optimized for speed.

 10. Dev/production parity. Quite simply, provide production-like environments
through all stages of the application delivery pipeline.

 11. Logs. Treat logs as event streams that can be actively monitored in real
time and analyzed to provide rapid feedback to all stakeholders who
need the data and information.

 12. Admin processes. Ensure that admin processes that are run to monitor
and gather information about the app—such as managing A/B testing
results, data cleanup, and running analytics—all run as processes in
the production environment to ensure accuracy of the gathered data.

If you look at these 12 Factors, they appear to be just another version of sev-
eral of the DevOps plays presented in this book. They are just a methodology

Chapter 5 devops plays for driving Innovation 247

to reach the same end results that DevOps does, while being specialized for
what are called cloud-native applications. Adopting the 12-Factor App is ide-
ally suited for developing apps using a microservices architecture.

Cloud Native
Before moving on, it is essential to better define the term cloud-native app that
I introduced in this section. Cloud-native apps are the culmination of the
coming together of the following concepts:

 ■ DevOps
 ■ Microservices
 ■ Containers

These concepts—merging with the sole intent of delivering applications
that are built for the cloud and that need a new development, delivery, and
operations paradigm to run at cloud scale—have the capability to manage the
orchestration needed for that scale and to deliver an Antifragile environment
capable of handling that scale.

CloUd-NAtIve sYsteM propertIes

 a. Container packaged. Running applications and processes in software
containers as an isolated unit of application deployment and as a
mechanism to achieve high levels of resource isolation. Improves
overall developer experience, fosters code and component reuse,
and simplif[ies] operations for cloud native applications.

 b. Dynamically managed. Actively scheduled and actively managed by a
central orchestrating process. Radically improve machine efficiency
and resource utilization while reducing the cost associated with
maintenance and operations.

 c. Micro-services oriented. Loosely coupled with dependencies explic-
itly described (e.g., through service endpoints). Significantly increase
the overall agility and maintainability of applications. The founda-
tion will shape the evolution of the technology to advance the state
of the art for application management and to make the technology
ubiquitous and easily available through reliable interfaces.

—Cloud Native Computing Foundation, 2015

DevOps Adoption Playbook248

Cloud-native applications, by definition, require a PaaS or CaaS in order to
run—leveraging containers to deploy and run in either cloud model. They are
designed using a microservices architecture. They are developed and delivered
using a 12-Factor App methodology. Small batches, rapid delivery, scalability,
and antifragility are some of their core themes.

Developing and delivering cloud-native applications requires that the Dev
and Ops teams have a good understanding of how such apps differ from tra-
ditional apps in several core assumptions that the Dev and Ops teams make
about an app (Brown, 2016):

 ■ In a cloud-native app, it is the application and services themselves that
provide any non-functional requirements (NFRs), as opposed to tradi-
tional apps where the NFRs are provided by the infrastructure. Examples
include load-balancing, high availability, and application monitoring.

 ■ The infrastructure is constantly changing (it is elastic in nature), as
opposed to traditional apps, which run on infrastructure that is static,
with a fixed topology.

 ■ The application components may be globally distributed, across mul-
tiple cloud environments, running as services, as opposed to a tra-
ditional app where components are typically co-located in the same
environment, made of co-located servers.

 ■ The DevOps team members control the production servers, as opposed
to a traditional app where the Ops team is responsible for running the
production servers. For a cloud-native app, the Ops team runs the plat-
form or containers service. It becomes the DevOps team that owns the
app to run their own production instances on the platform—whether
they are individual server instances or containers.

 ■ If a disaster happens, it is the DevOps team’s responsibility to make sure
the app stays up, as opposed to traditional apps where there is a formal
hand-off from Dev to production and from that point onwards, the Ops
team runs the application with minimal Dev engagement, if any. Again,
for cloud-native apps, the Ops team runs the platform or containers
service. As long as their core platform services are available, they are
good. If an app running on the platform crashes, it is the responsibility
of the DevOps team that owns the app to bring it back up.

Developing and delivering cloud-native apps is not just an architectural
or methodology shift. The entire composition of the team, the roles of team

Chapter 5 devops plays for driving Innovation 249

members, and the skills they need in order to effectively and efficiently develop
and deliver these apps, all need to change.

Microservices and Containers
Microservices and containers are gaining traction in tandem, and for good
reason. While neither has a dependency on the other—containers don’t need
what is packaged inside to be microservices, and microservices don’t need
containers to be deployed—the value proposition of leveraging containers to
enable the build, deployment, and running of microservices is tremendous.
There are three main benefits:

 1. Environment abstraction. By definition, containers cause what is running
inside them to be abstracted from the environments on which the con-
tainers are running. Portability of the containers is the whole idea. To the
microservice, they always leverage the environment’s services in the same
way, irrespective of which environment the containers are deployed to.

 2. Granular execution. Because containers are much lighter than full virtual
machines, they can be scaled at a much lower cost. Thus, the microser-
vices they are running can be scaled horizontally more easily without
needing the underlying infrastructure to be taxed inefficiently.

 3. Isolation. Microservices in containers can be run as isolated, indepen-
dent processes, unencumbered by where and how other services they
are consuming or interacting with are running. Multiple microser-
vices can be run on the same server instance, or be distributed across
multiple server instances, without being concerned about interference
between multiple microservices. Load balancing can thus be much
better planned and managed to maximize server utilization, and redun-
dancy for a microservice can be better achieved by running multiple
instances of the same microservice across multiple server instances.

Migrating to Microservices

sIMplIFYINg FootBAll plAY CAllINg

The backbone of the Erhardt-Perkins system is that plays—pass plays in
particular—are not organized by a route tree or by calling a single receiver’s
route but by what coaches refer to as “concepts.” Each play has a name, and

continued

DevOps Adoption Playbook250

that name conjures up an image for both the quarterback and the other play-
ers on offense. And, most importantly, the concept can be called from almost
any formation or set. Who does what changes, but the theory and tactics driv-
ing the play do not. “In essence, you’re running the same play,” said Perkins.
“You’re just giving them some window-dressing to make it look different.”

The biggest advantage of the concept-based system is that it operates from
the perspective of the most critical player on offense: the quarterback. In
other systems, even if the underlying principles are the exact same, the play
and its name might be very different. Rather than juggling all this informa-
tion in real time, an Erhardt-Perkins quarterback only has to read a given
arrangement of receivers. “You can cut down on the plays and get different
looks from your formations and who’s in them. It’s easier for the players
to learn. It’s easier for the quarterback to learn,” former Patriots offensive
coordinator Charlie Weis said back in 2000. “You get different looks with-
out changing his reads. You don’t need an open-ended number of plays.”

—Brown C., 2013

To close this play to deliver microservices architectures, let’s return to the
core topic of the play: developing and delivering microservices architectures.
There are two scenarios here:

 ■ Develop and deliver new cloud-native apps
 ■ Migrate existing monolithic apps to microservices

The first scenario can be achieved using the microservices, 12-Factor App,
and cloud-native app principles and guidance provided earlier. This is a new
application, which, while it may consume existing applications and services,
is being built from the ground up and will not be encumbered by existing
architectures and constraints due to existing code and data.

In the second scenario, it is like developing a new football play calling system.
The goal is to simplify the existing architecture—code and data—into architec-
tural components that can be migrated to components that can each map to a
microservice. However, the architectural decisions made for the monolithic app
and the existing data stored in databases become a source of major challenges.
The application and the data need to be refactored, as shown in Figure 5-12.
In addition, Conway’s law comes into play with the existing team structures,
which may need to be broken down to properly re-architect the app.

continued

Chapter 5 devops plays for driving Innovation 251

Here are the core steps to refactor a traditional monolithic app to microser-
vices (Brown, 2016):

 ■ Repackaging the application. Let’s take a Java app as an example. Most
Java apps are deployed as a large EAR file deployed to an app server like
IBM WebSphere, Oracle WebLogic, or Apache Tomcat. These EAR files
are typically composed of multiple WAR files that were developed by dif-
ferent development teams and “integrated” into the EAR file. As shown
in Figure 5-13, decomposing the EAR files into individually deployable
WAR files, each becoming a microservice, is a good start. While it does
not address the architectural complexities by decoupling the underly-
ing components (in other words, it does not address the architectural
dependencies added due to Conway’s law), it does address the need to
make each component capable of being built, deployed, and managed
independently of others, a key requirement of microservices.

Browser Mobile APIs
External

Application

Web
Application

Database Backend
Services

Browser

Cloud
Service

Microservice Microservice Microservice

Microservice Microservice

Service or App Port

Cloud
Service

Mobile APIs
External

Application

Figure 5-12: re-architecting to a microservices architecture

Figure 5-13: repackaging Java apps into
microservices

Before After

EAR

WAR A

WAR B

WAR C

Application
server

WAR A

Application
Server

WAR B

Application
Server

WAR C

Application
Server

DevOps Adoption Playbook252

 ■ Refactoring the code. Now you are looking at taking the architectural
dependencies that do not make sense and breaking them down into
microservices that are truly granular in nature. This effort requires
looking at the code to determine where there are granular service-like
behaviors embedded in the existing components and then refactoring
the code into its own component. This component will then need to
be given a well-defined RESTful interface, if it does not exist, in order
to make a complete microservice. Depending upon the design pat-
terns used, this refactoring can be a fairly complex effort and should
be treated as such.

 ■ Refactoring the data. The toughest challenge to migrating existing
applications to microservices is not related to the code at all, but
the data. Over the years, existing applications with large and often
multiple data sources and complex data flows between the databases
and application components make even understanding what is stored
and why a complex task. However, when it comes to refactoring the
applications into microservices, refactoring the data structure models
becomes critical. For microservices to behave and operate indepen-
dently of other microservices, they need to be able to interact with
the right data structure, stored in the right data store. In order to
achieve this, all the data models and data storage decisions need to
be revisited:

 ■ Is the right data structure being used?
 ■ Is the right data store being used?
 ■ Is the right approach being used to query the data?

In the past, a relational database was the only option. This resulted
in all data formats, from binary data to structured Java objects to graph
data models, all being stored in relational databases. Furthermore, these
relational databases were heavily normalized to save space. All these
resulted in overly complex relational data structures, binaries being
stored as blobs that could not effectively have queried, or extremely
complex queries of graphs. Today there are polyglot data stores—from
object storage to JSON document stores to graph databases—to store the
data in a data store best matched for its format and query requirements.
Again, this refactoring is not trivial. In fact, it is typically an even more
complex undertaking than refactoring code, given the complexity of the
data structure types, data models, and data stores that may be involved.
However, to get a true microservices architecture, there is no calling for
a punt to get around it.

Chapter 5 devops plays for driving Innovation 253

play: develop an ApI economy

It’s the eCoNoMY, stUpId!

World soccer clubs, constrained by their inability to increase their income from
their traditional businesses, have begun to adopt strategies to transform them-
selves into modern sports and media companies. Under the recent presidency
of Florentino Pérez, the Spanish football club Real Madrid presents a good
example of the application of this expanded vision. One of the fundamental
pillars of this model has involved designing and implementing a new market-
ing strategy aimed at strengthening the value of the club’s brand. The adoption
of this model has resulted in a significant increase in income from marketing.
Undeniably, in this area, Real Madrid has become the leader in world soccer.

—Fordacell, 2006

Just like soccer clubs looking for innovative ways to develop new monetization
models to increase their brand’s value, APIs can help organizations looking to
innovate with business models beyond their core competencies and capabilities.

APIs allow applications and services to expose their functionality and capa-
bilities outside their team to other applications and services, both inside and
outside their organizations. APIs are sometimes also referred to as such—inner
APIs are those that are leveraged internally within the organization, and outer
APIs are leveraged externally. The security, management, and metering require-
ments are, of course, different based on the intended target audience of the API.

APIs should be the default mechanism by which applications and services
communicate with each other. If you have developed a microservices-based
architecture, that is the default mode. In legacy apps, there may be scenarios
where there are point-to-point custom integrations between applications.
These should be replaced with well-defined APIs.

APIs are not new. The concept has been around for a long time, especially gain-
ing traction with the popularity of service-oriented architecture (SOA). In fact,
there is often debate about the differences between SOA and APIs. In their purest
form, both provide a mechanism to decouple applications into services, which
have a well-defined architectural interface with which to communicate and con-
nect with other services. By definition, this architectural interface is an API. The
main difference between what is today referred to as an API and the traditional
SOA interfaces is that APIs are associated with REST/JSON interfaces, whereas
SOA is associated with XML and SOAP. This enables APIs to be extremely light-
weight, flexible, and easy to manage and to consume, compared to SOA.

DevOps Adoption Playbook254

APIs have become a mechanism for driving innovation by allowing devel-
opers to create new applications leveraging internal and external APIs to add
more services to their applications. They do so in two ways:

 ■ Leveraging the ecosystem. Organizations can do this by developing new,
innovative applications leveraging APIs from external third-party ser-
vices. Why build your own mapping service if there is a third-party public
API that delivers the service? Why build a user identity management
service if another team in the organization has already built one and has
exposed it via an API? Figure 5-14 shows the sports network ESPN’s pub-
lic APIs, which allow any developer to include sports data in their apps.

 ■ Scaling through the ecosystem. Organizations can now monetize their own
business capabilities beyond the monetization capabilities of their own
business models by exposing them to a broader ecosystem via APIs. If a
bank has developed a service that efficiently and accurately calculates the
“Greeks” or risk profile of a derivatives trade, why not monetize it by allow-
ing external partners to consume that service and pay for it via an API?

Figure 5-14: espN public ApIs (espN developer Center, 2015)

Chapter 5 devops plays for driving Innovation 255

deployment Automation and ApIs
From a DevOps perspective, APIs are the same as a service. Organizations need
to treat APIs as a product. This is especially true for “outer” APIs, whether they
are monetized or not. Even internally, though, an API is a contract between
the provider and the consumer and needs to be treated as such. For applica-
tion delivery purposes, delivering an API is providing the service that the API
exposes. The lifecycle of the service, however, now also includes steps that
address the APIs. For example:

 ■ Testing the app or services’ functionality, performance, and security is
not enough. You need to do the same to the APIs, leveraging use cases
of how the APIs would be consumed.

 ■ Configuration management of the app and services typically also includes
managing the configuration of the associated middleware. Now, con-
figuration management of the API and any API management software
that is utilized should also be addressed.

 ■ For release management, the release of a business capability is the release
of all the applications and services that go into delivering the business
capability. With APIs included, the release will also need to include all
the third-party APIs consumed by the applications and services being
released. Managing the SLAs of these APIs becomes a concern of the
release management team.

I have already discussed the core value proposition of APIs for continuous
delivery at length in the section on microservices architecture. APIs allow
applications and services to be de-coupled. They can thus be built, deployed,
and run independently of each other, without being concerned about the
deployment location of the other services they consume. All that matters is
the availability of the APIs. Applications and services can also be scaled by
deploying more instances of the service that needs to be scaled, without having
to scale other services that are not impacted by the scale of the service being
requested for scaling. APIs thus allow for true continuous delivery, by allowing
for the delivery of small batches of change, with rapid feedback cycle times.

devops platform and ApIs
The role of APIs is also a crucial component because the DevOps platform
itself is also accessible via APIs, whether it is implemented using IaaS, PaaS,
or CaaS. Let’s look at the role of APIs for each of these variants.

DevOps Adoption Playbook256

 ■ If the platform is implemented leveraging an IaaS cloud, then the IaaS
services are all exposed as APIs. These services and the resources they
deliver are all consumed by the applications being delivered and run on
the platform via APIs. In the scenario I described earlier in the section
“Cloud Orchestration” of full stack provisioning across multiple clouds
using portable Heat patterns, leveraging OpenStack APIs to provision the
HEAT patterns on multiple clouds. Figure 5-15 shows an example of the
networking API available for OpenStack.

Figure 5-15: openstack networking ApI (openstack.org, 2016)

 ■ If the platform is being implemented using a PaaS or a CaaS, the tool-
ing also becomes accessible by leveraging APIs. The DevOps tooling in
these scenarios are services running on the PaaS or in containers. These
services are connected and orchestrated to implement the application
delivery pipeline using their APIs.

Chapter 5 devops plays for driving Innovation 257

play: organizing for Innovation

developINg pros

The Dominican Republic and Nicaragua are roughly comparable in popu-
lation and share an equally deep passion for baseball. But the Dominican
Republic has sent well over 100 players to Major League Baseball (MLB)
teams, while Nicaragua counts only three big-time players.

Nicaragua is looking to change that disparity. And the first step in
achieving that may have come early this year with the opening of the
Nicaraguan Baseball Academy. Dennis Martínez, who in 1976 became the
first Nicaraguan to make it to the majors, is helping to lead this effort to
train aspiring major leaguers with the skills necessary to attract attention
from scouts.

Success will not only boost a new generation of Nicaraguan players but
inject some needed cash into the country’s economy—judging by the exam-
ple of the Dominican Republic.

In the Dominican Republic, pitchers, hitters, and fielders are major
export commodities, earning serious foreign exchange for the country
and massive remittances for the athletes’ families. The fame of Dominican
superstars like David Ortiz, Robinson Canó, and Sammy Sosa (before his
steroids scandal) fill MLB stadiums and also help boost tourism—a major
growth industry—to their homeland.

Just as important, baseball has been the path out of poverty for thou-
sands of Dominican youth—a healthy and lucrative alternative to dangerous
careers in gangs and crime.

Nicaragua’s Martínez, who in 1991 became the only Latin American-born
pitcher to throw a perfect game, is betting that Nicaraguan youth—like their
Dominican counterparts—have the talent and ambition to succeed in MLB.
The challenge had been developing the proper business model.

—Feinberg, 2011

How do you identify and develop professional players? The Moneyball model only
works when the player already has a statistically significant track record to base a
selection decision on. How do you go through the thousands of young players who
are striving for stardom to identify the emerging prospects and invest in them?

DevOps Adoption Playbook258

Innovation is the same. For every startup that became Uber and Airbnb,
and before them Facebook and PayPal, and even before them Microsoft and
Apple, there are thousands of startups that failed. Some never got past the
formation of the founder team, while others even exited via an IPO, or by
being acquired, only to die despite the prospects. You, of course, do not hear
of all those that didn’t make it.

Within large organizations, the situation is even worse. There are very few
large companies like Google, which never lost its innovation culture and has
several mechanisms in place to encourage new ideas from its employees (He,
2013). Most large organizations are not designed for innovation. They do not
have a culture of innovation; in fact, most have the exact opposite. Employees
are stifled by strict governance and performance management measures that
encourage them to do their prescribed job, to remain “in the box,” and to do
their work to the best of their ability, and new ideas are not encouraged. This,
of course, is not a viable business model for today’s competitive and rapidly
changing world. Having the best DevOps platform and efficient technology
platforms designed for innovation is not of any value if there are no innovative
ideas being developed and experimented with.

The story of innovation has not changed. It has always been a small team of people
who have a new idea, typically not understood by people around them and their
executives.

—Eric Schmidt, Chairman, Google

From a DevOps adoption perspective, this culture is critical, and creating
it trumps all the technology and process improvement that can be adopted by
the IT teams. All the themes and plays discussed in this chapter are designed
to enable the teams Eric Schmidt talks about. These are the teams that come
up with the innovative ideas and work hard to experiment with them to see
if a business opportunity exists and if the innovative idea is viable. All this is
moot if the culture at the organization does not even allow the team to work
on the idea with the freedom and the resources they need, if the people around
them and the executives that Eric mentions do not enable a culture that allows
ideas to evolve and thrive and fail without consequences. That culture is not
easy to establish in a large organization with significant cultural inertia, but
it is essential. Large organizations are often able to do this in small teams
that are able to fly under the radar but that works only for small projects in

Chapter 5 devops plays for driving Innovation 259

isolation. To achieve an organization-wide innovation culture requires the
ability to innovate across the organization, at enterprise scale.

developing an Innovation Culture in large
organizations

Many sports, not just football, have kind of the macho meathead mentality where
innovation is almost frowned upon.

—Lawrence Jackson, former American football player

McKinsey and company have presented four proven approaches on how
to establish and scale this innovation culture. They speak in the context of a
digital disruption (Edelman, 2015):

 1. Organizational pivot. The organization puts the innovation leaders in
charge of the entire organization, not just of driving innovation. This
allows the organization to develop an innovation first culture, which
also accelerates the optimization of the legacy systems.

 2. Reverse takeover. This is a more aggressive option where the innovation
leaders take over the legacy apps and systems and transform their pro-
cesses, technology, and teams to be the same as those of the innovation
teams, enabling organization-wide innovation processes, technology,
and culture.

 3. Spinoff. This is a slice-and-dice approach where the innovation-focused
teams are grouped into a separate, independent division to allow them
all to grow, thrive, and develop the right processes, IT platforms, and
culture on their own, unencumbered by the rest of the organization’s
cultural inertia. In some extreme cases, these divisions have also been
spun off as separate companies either independent or as a subsidiary.

 4. The piggyback. This is a partnership approach where the organization
teams up with another firm that has the necessary innovation-focused
skills, know-how, and culture. The partner then starts delivering inno-
vation systems to complement the legacy systems from the base orga-
nization, without the organization needing to transform itself.

I will be discussing specific team models for adopting a DevOps culture,
both for optimization and for innovation, in the next chapter.

DevOps Adoption Playbook260

summary
In this chapter I focused on DevOps plays that are patterns of success seen
when adopting DevOps for projects and programs that have the goal of
innovation. It is important to note that outside of startups, most organizations
rarely have innovative projects that operate in isolation. Hence, each innovative
product will dependencies on existing applications and services that are not
innovative in nature but deliver core business services. Real DevOps adoption
in large organizations will hence always include both plays for optimization
and innovation.

The four plays I introduced in this chapter are:

 ■ Build a DevOps Platform
 ■ Deliver Microservices Architectures
 ■ Develop an API Economy
 ■ Organizing for Innovation

These plays help achieve the four themes highlighted at the beginning of
this chapter:

 ■ Achieving Multi-Speed IT
 ■ Building the right thing
 ■ Enabling experimentation
 ■ Delivering Antifragile systems

At the end of the day, it is achieving these themes are what is critical to
success. These are the goals one is trying to achieve.

Multi-speed is reality. In most large organization there is a wide spread of
technology stacks, practices, team maturity, regulatory and compliance needs,
and business drivers that result in multiple speeds across applications and
services being delivered.

A very significant percentage projects fail because they built the wrong
thing, despite building it right. Unfortunately, more investment is made in
most organizations on improving development and delivery processes, rather
than on design practices, and on leveraging techniques like those from the
Lean startup movement. Leveraging experimentation to discover this right thing
to build it and the right way to deliver it, goes hand in hand.

And finally, as one builds systems that can handle rapid experimentation,
handle variable usage and loads, and be able to scale in real-time, one needs
to deliver Antifragile systems, systems that thrive in chaos.

Building a Culture of Winning

The prospect of going from a team that’s at the bottom of the standings to
one that’s on top is daunting. When you’ve done a lot of losing, it gets hard
to imagine yourself winning. So even as I’m confronting players about their
weaknesses, I’m also always trying to build a culture of success. That’s not
something you can do overnight. You have to go one step at a time, the same
way you move the ball down the field, yard by yard.

Here’s my philosophy: to win games, you need to believe as a team that
you have the ability to win games. That is, confidence is born only of
demonstrated ability. This may sound like a catch-22, but it’s important to
remember that even small successes can be extremely powerful in helping
people believe in themselves.

In training camp, therefore, we don’t focus on the ultimate goal—getting
to the Super Bowl. We establish a clear set of goals that are within immediate
reach: we’re going to be a smart team; we’re going to be a well-conditioned
team; we’re going to be a team that plays hard; we’re going to be a team
that has pride; we’re going to be a team that wants to win collectively; we’re
going to be a team that doesn’t criticize one another.

When we start acting in ways that fulfill these goals, I make sure every-
body knows it. I accentuate the positive at every possible opportunity, and
at the same time I emphasize the next goal that we need to fulfill. If we have
a particularly good practice, then I call the team together and say, “We got
something done today; we executed real well. I’m very pleased with your
work. But here’s what I want to do tomorrow: I want to see flawless special

Chapter 6

Scaling devops for
the enterprise

continued

The DevOps Adoption Playbook: A Guide to Adopting DevOpsin a
Multi-Speed IT Enterprise
By Sanjeev Sharma
Copyright © 2017 by John Wiley & Sons, Inc., Indianapolis, Indiana

DevOps Adoption Playbook262

The set of plays presented in this chapter examine how DevOps can be
scaled across a large organization. Large organizations are not monolithic
in nature. They have several smaller divisions and business units within
them, each with its own platforms, processes, maturity, politics, and culture.
These organizations may have grown through acquisitions and mergers. It
is not uncommon to see these acquired or merged organizations continue
to exist within the parent organization almost as independently operating
sub organizations. In some cases, this may be intentional, where the parent
organization just operates the acquired company as a wholly owned subsidiary
with no intent to integrate it into the parent organization. In other cases, it is
mostly the result of an integration effort gone bad; this effort may have failed
either because of bad planning or execution or most likely due to a lack of full
buy-in from the leadership of the merging organization to truly integrate—to
truly change its culture. Integrating or standardizing technology is relatively
easy. Standardizing culture is not.

Furthermore, as I discuss in Chapters 3 and 4, large organizations typically
have rigid and complex governance practices that stifle speed and innovation.
These practices are designed to manage and control a sprawling organization
with many moving parts, not to enable agility and creativity. As a result, such
organizations see success with DevOps adoption within small teams, work-
ing on small projects. These projects are able to “fly under the radar” or are
protected by the executives sponsoring them, which allows them to operate
outside the traditional governance and processes. They are allowed to be agile
and innovative. However, without changing the governance models or chang-
ing the culture at an organizational level, this success cannot be scaled. The
plays in this chapter are designed to achieve the scaling.

teams work. If you accomplish that, then we’ll be ready for the game on
Sunday.”

When you set small, visible goals and people achieve them, they start to
get it into their heads that they can succeed. They break the habit of losing
and begin to get into the habit of winning. It’s extremely satisfying to see
that kind of shift take place in the way a team thinks about itself.

—Parcells, 2000

continued

Chapter 6 Scaling devops for the enterprise 263

Core themes
Just like the previous two chapters, I’ll begin by looking at a few core themes.
These themes are woven through the plays presented in this chapter, which
are designed to scale DevOps adoption across a large, potentially distributed
organization.

organizational Culture

The culture precedes positive results. It doesn’t get tacked on as an afterthought on
your way to the victory stand. Champions behave like champions before they’re
champions; they have a winning standard of performance before they are winners.

—Bill Walsh, American football coach

I have repeated this statement several times through this book: DevOps is
at its core a cultural movement. The first goal of DevOps is to build up trust,
communication, and collaboration between the different stakeholders in the
application delivery pipeline. All other goals are secondary, or enablers of this
primary goal. If you have a fully automated, integrated delivery pipeline, with
a push-button self-serve environment, and highly optimized processes, but
the developers and testers never collaborate with the Ops practitioners; never
give them guidance on changes they will be deploying and that will impact
their dev-test-prod environments; and never receive feedback from the Ops
teams, then the application being delivered will not meet the business goals
to its fullest potential.

This becomes a major challenge in large organizations. Such organizations
have inherent cultural inertia, as I discuss in Chapter 2. They are organized
with complex, bureaucratic organizational structures and governance pro-
cesses. These structures were designed over time to manage and maintain
oversight over a large organization. Organizations are broken down along divi-
sions representing lines of business, or an arbitrary separation along parochial
organizational lines, such as those representing acquired or merged businesses.
These divisions may be further organized along functional silos. There may
also be some other operational silos representing shared services—service pro-
viders who are shared across multiple lines of business.

Creating a culture that permeates across all these boundaries and silos is not
a trivial task. It requires leadership and sponsorship from the highest levels of
the organization. That is the only level that can influence and promote change

DevOps Adoption Playbook264

across all organizational divisions and silos. Only the highest leadership level
can overcome cultural inertia by providing the “air cover” necessary to allow
teams adopting DevOps processes and practices to operate outside the tradi-
tional organizational governance controls and inherent culture.

Probably the most important caveat to remember here is that cultural trans-
formation is not a one-time effort. It is not a project that has a beginning and
an end. Cultural inertia also develops in a new culture, resulting in the chal-
lenges of rigid processes and people becoming set in their ways, leading to
inefficiencies in even the best of DevOps cultures. True cultural transformation
needs to come with a culture of continuous improvement—to be better today
than you were yesterday.

Standardization of tools and practices

It is impossible to improve any process until it is standardized. If the process is
shifting from here to there, then any improvement will just be one more variation
that is occasionally used and mostly ignored. One must standardize, and thus
stabilize the process, before continuous improvement can be made.

—Masaaki Imai, Japanese organizational theorist and
founder of the Kaizen Institute

Continuous improvement requires standardization to be in place before
it can be executed. As Imai-san states here, if a process has variations as it
is executed each time, it cannot be improved upon. It will not be possible to
determine what needs to be improved in order to maximize the efficiency
of the process. Also, if an improvement has been made to a process but the
process is executed in a manner different than it was before the improvement
was made, it will not be possible to measure whether the improvement had
an impact and at what level. Now multiply this by the number of teams and
whether each team executes the processes with its own variations and flavors,
and you can see that determining what to improve becomes almost impos-
sible. I need to state here that I don’t mean that processes should be followed
rigidly, because that itself defeats the principle of Agility; however, variations
should be within reason and for a reason, one that customizes the process for
a specific need the team or project may have.

Overall, processes need to be standardized to a bare minimum set from
which the team can choose the standardized processes that are best for their
needs. Organizations need to determine how many “sets” of standardized

Chapter 6 Scaling devops for the enterprise 265

processes need to be in place based on the risk-value profiles of various proj-
ects. The thinking on processes described here applies equally to the tools
implementing and automating these processes, and these tools also need to
be standardized.

Furthermore, people need to be fungible.1 While calling people fungible
seems cold and certainly politically incorrect, it is a necessity in Agile organiza-
tions with multiple projects and deliverables with staffing needs that change
over time. Consider a practitioner with a particular skill set. If one team no
longer needs those skills but another team does, what level of effort is required
to transition the practitioner from the first team to the next? Will training on
processes be required? Will training on tools be required? How much time
will be needed to onboard the practitioner to her new team? Standardization of
processes and tools makes this transition seamless. It makes the practitioner
fungible across teams and projects.

organized adoption

Champions do not become champions when they win the event, but in the hours,
weeks, months, and years they spend preparing for it. The victorious performance
itself is merely the demonstration of their championship character.

—T. Alan Armstrong, American author

As I mentioned earlier, adopting DevOps is not a one-time project, but an
ongoing effort. When adopting across a large organization, it is imperative to
do so in an organized manner to ensure proper standardization of processes
and tooling and to ensure minimization of any loss of productivity. As I dis-
cuss in previous chapters, introducing any change, even one for the positive,
results in a drop in productivity as practitioners adjust to the changes and get
comfortable with the new way of working. Having an organized approach to
change, with proper enablement and coaching, ensures minimization of this
dip in productivity.

Another reason to do so in an organized manner is to invest the minimum
resources in driving change. There will be only so many leaders available to
provide coaching and only so many processes and tool specialists to help drive
process and tool adoption. There is only so much capacity in an organization

1 Fungible: Being of such a nature that one part or quantity may be replaced by another
equal part or quantity in the satisfaction of an obligation. (The Merriam-Webster Dictionary)

DevOps Adoption Playbook266

to absorb change and the associated loss of productivity. Change should thus
be made in a rolling adoption across the enterprise, as sets of projects and
teams are onboarded one set at a time. The size of each set will depend on the
coaching and enablement resources available.

Because organizations may have significant variations in practitioner and
process maturity across teams, divisions, and geographies, it is also imperative
to plan for handling these variations. There may be a need to run sets of pilot
projects in different divisions and geographies to prove that the adoption of
the new processes and tools will work for the local variants, and if they do not
work, what changes and enhancements need to be made to accommodate these
variations. For example, an offshore team with more junior practitioners and
larger team sizes may need more coaching and enablement than a smaller team
with highly experienced practitioners. Teams working on an older toolset due
to the needs of their projects may need to do an upgrade to an intermediate
level of tools, before going to the highest level of automation. For example,
you would want to move COBOL programmers working on “green screens”
to an Eclipse-based desktop IDE, before moving them to a web-based IDE.

Breaking down organizational Silos
Breaking down organizational silos in large organizations is extremely difficult.
There are political powers that resist change. There are executives and senior
managers whose power structures, influences, and “fiefdoms” are threatened
when exploring organizational change. Very few organizations have leadership
with the political will to reorganize entire reporting structures from the top
down. Creating a new senior executive role with all the functional teams in
the application delivery pipeline reporting to her would be extremely unusual,
and it would be even more unusual for this implementation to succeed.

The breaking down of organizational silos is essential, but in large organi-
zations it needs to be done without disrupting existing reporting structures.
Leveraging matrixed teams where practitioners remain in their existing report-
ing lines but functionally work on a team with matrixed reporting into that
team’s leadership is an alternative that works. It really doesn’t matter which
vice president the Ops practitioner reports to, as long as she knows, and is
able to freely work with, her project teams and to get direction from the team’s
leadership. If communication has to go through “proper management chains,”
then such a matrixed model will not work. Practitioners need to be able to
communicate freely and collaborate with their team. Free communication and
visibility into all the team’s practitioners’ work builds trust.

Chapter 6 Scaling devops for the enterprise 267

play: devops Center of Competency

india’S Badminton Center of CompetenCy

If there is one person and one academy that helped India produce world-
class shuttlers2 and emerge as a badminton hotbed, it’s Pullela Gopichand
and his badminton academy [in Hyderabad]. Sixteen years after his heart-
breaking defeat at the Sydney Olympics, Gopichand came close to realizing
his Olympic dream—albeit in a different role.

The amazing run of P.V. Sindhu at the Rio Olympics has brought the
focus on her celebrated coach and his academy here. Sindhu, who created
history by bagging silver in the women’s singles event, is one of the products
of Pullela Gopichand Badminton Academy.

Sindhu is the second woman shuttler after Saina Nehwal to take the bad-
minton world by storm and bring laurels to the academy set up by former
All England Open Champion.

Analysts say the credit of turning India into a formidable force in the
world of badminton goes to the 42-year-old, who has groomed world-class
talents….

Gopichand always had dreams of producing Olympic medalists. His
efforts started yielding results with Saina bagging bronze in the 2012
London Olympics.

She became the first Indian woman shuttler to achieve the feat. Four
years later, Gopichand’s dream again came true with Sindhu reaching the
final and losing there only to World No. 1 Carolina Marin.

—TheSportsCampus, 2016

2 Badminton players are referred to as shuttlers.

Probably the most significant investment that can be made in driving the
adoption of a DevOps culture across a large organization is the setting up
of a DevOps Center of Competency (CoC). India has produced two Olympic
women’s badminton medalists in successive Olympics, in a country with no
major legacy in the sport, all because of one coach named Pullela Gopichand
and his Gopichand Badminton Academy, a badminton Center of Competency.
Coach Gopichand, himself a world-class badminton player, missed out on an
Olympic medal in his own career but has created a central source of expertise,
enablement, and coaching for budding badminton players to follow a proven

DevOps Adoption Playbook268

methodology to develop into world-class, Olympic medal-winning players.
Similarly, a DevOps Center of Competency can serve the purpose of being a
source of expertise, enablement, and coaching for teams in an organization
looking to adopt DevOps.

Let’s begin by first defining what a Center of Competency is.

CompetenCy Center

An organizational structure used to coordinate IT skills with an enterprise.
Competency centers provide expertise for project or program support, act-
ing both as repositories of knowledge and resource pools for multiple busi-
ness areas. Skills-based competency centers, the most common type in an
information services organization, are used for application development,
software language skills, data management, Internet development, and net-
work design. Within the enterprise, it is increasingly common to find com-
petency centers (or shared services) for travel, finance, and human resources.
Repository-based competencies act exclusively as sources of information.

—Gartner, 2016

This Center of Competency is not an administrative organization or a “tools/
enablement group,” but a place where DevOps adoptees come to learn from
experts and from each other and to share expertise and lessons learnt. As orga-
nizations adopt and scale DevOps practices, this CoC also becomes a source
of DevOps expertise, enablement, tooling guidance, and even hosting, as well
as DevOps coaches who can help teams and programs to adopt DevOps. The
CoC also owns the organization’s DevOps framework or methodology—their
own flavor of DevOps.

Capabilities and goals of a devops CoC
The CoC needs to have a well-defined charter and set of goals for the organi-
zation. The CoC also needs to be a multi-faceted organization owning a set
of capabilities and having a set of goals to achieve with those capabilities. If
leveraging this book, the CoC would also be responsible for developing the
organizational “Playbook” from the “Plays” presented here, and for under-
standing and owning the execution of the Plays. These include the following:

 ■ Provide thought leadership for DevOps adoption
 ■ Provide mentorship during a DevOps transformation

Chapter 6 Scaling devops for the enterprise 269

 ■ Help project teams follow a DevOps adoption roadmap, developed for
them, leveraging techniques like value stream mapping.

 ■ Facilitate communications within the organization, across teams, and
with management.

 ■ Set up a community for DevOps adoption across the organization. This
community should have a virtual portal through which best practices,
enablement, and other assets can be shared, and practitioners can par-
ticipate in forums. It should also have local chapters that meet regularly.

 ■ Drive change and enable continuous improvement.
 ■ Provide visibility to the progress and results that the organization is

making as it scales its DevOps adoption across the organization.
 ■ Capture and make available measurements and metrics to track success.
 ■ Document and communicate best practices.
 ■ Facilitate or provide common tooling for the DevOps platform.
 ■ Engage the stakeholders across functional silos to drive DevOps

adoption.
 ■ Spread and celebrate success stories within the organization to win

over skeptics and laggards.
 ■ Be a permanent organization to ensure that DevOps adoption is seen

as an ongoing, continuous improvement effort and not a one-time
project.

 ■ Provide coaching to project teams through DevOps coaches.
 ■ Provide coaching to executive management driving the long-term trans-

formation, to ensure the right level of planning is done, and the right
level of investments are made to enable success.

Core CoC roles
The DevOps CoC needs to have some well-defined roles in order to position
it for success:

 ■ Project managers. As more and more projects start leveraging the CoC
to help drive DevOps adoption, project managers are needed to help
manage the resources deployed across the projects and to manage the
needs of the various projects.

 ■ Implementation manager. This manager drives implementation of assess-
ments, tooling solutions, and measurements across projects adopting
DevOps.

DevOps Adoption Playbook270

 ■ Infrastructure manager. This manager sets up and maintains tooling to
deliver a DevOps platform to the project teams. The DevOps platform
may be owned and managed by the CoC or by a separate tools or envi-
ronment team.

 ■ DevOps coach. I will present more details on this role in the following
section.

 ■ Evangelist. As the name suggests, the evangelist drives initiative, com-
municates, and shares DevOps learning and success stories.

the devops Coach

CoaChing Can make or Break an olympiC athlete

What differentiates a superelite from someone who competes at the Olympics
but goes home empty-handed? New research suggests it can come down to
the coach–athlete relationship. According to findings presented in November
at the World Class Performance Conference in London, superelites felt that
their coaches fully satisfied their emotional needs by acting as friends, men-
tors, and unwavering supporters—in addition to providing superb technical
support. High-performing athletes who were not medaled did not feel that
way. “This turns on its head a long-held view that we must simply pair the
best technical and tactical coaches to our best athletes to achieve ultimate
performance,” says Matthew Barlow, a postdoctoral researcher in sport psy-
chology at Bangor University in Wales, who led the study.

Barlow and his colleagues were commissioned to find out what it takes
to win multiple gold medals by the governmental organization UK Sport,
which promotes the nation’s elite sports and athletic development. The
researchers initially identified 43 variables that reliably predicated the prob-
ability that someone would become a superelite. One of those factors was the
coach–athlete relationship, so UK Sport funded a second in-depth analysis
that focused solely on this aspect.

So Barlow and his colleagues recruited 16 male and female superelite
athletes, all of whom had won gold at a major championship (such as the
Olympics). They also recruited 16 athletes who had competed in such
championships but never medaled. The groups were matched in sport, age,
and gender. The scientists then conducted in-depth interviews with the
athletes as well as their parents and coaches. After analyzing the results

Chapter 6 Scaling devops for the enterprise 271

While the role of DevOps coach is fairly new in the industry, the concept is
not new. It is modeled after the Agile coach, which has been a role in Agile adop-
tion for a long time. DevOps coaches bring their knowledge of agility, DevOps
practices, and outcome-driven behavior to the projects. DevOps coaches are
embedded in one or multiple projects, depending on the project team size,
with the goal of transferring their knowledge and experience to leaders in
the project team. Their goal is to work themselves out of a job by leaving a
self-reliant team that can deliver efficiently leveraging DevOps practices, and
that has embarked on a journey of continuous improvement. The team can,
of course, continue to receive further guidance even after the assigned coach
disengages, through the DevOps CoC. The teams are also expected to give back
to the CoC by sharing their own experiences, success, and lessons learned.

A typical role description of a DevOps coach includes the following:

 ■ The DevOps coach works closely with teams and team members to
develop and perform activities allowing the development of Lean and
DevOps capabilities, with a goal of continuous improvement of their
skills.

 ■ The DevOps coach shares her experience and expertise with the teams
and ensures that the best practices adopted by the CoC are being used
as the organization’s DevOps methodology.

they found that all the athletes said they were technically supported by
their coaches—but it was the superelites who reported they also enjoyed
thorough emotional support. “Superelite athletes perceived their need for
emotional and esteem support were met in a way that the elites did not,”
Barlow says.

Coaches of superelites acted almost as surrogate parents, praising their
athletes’ efforts, emphasizing unwavering belief in them, providing posi-
tive feedback, and taking an interest in personal lives. “A cyclist might
come in and the coach says, ‘Hey, you’re not looking quite right, let’s have
a coffee and talk about difficulties you might be having at home,’” Barlow
says. “They have a bond that goes beyond spreadsheets, power outputs
and graphs.” Some elite athletes, on the other hand, felt invisible to their
coaches or sensed their mentors seemed to expect failure at key moments
when they most needed support.

—Nuwer, 2016

DevOps Adoption Playbook272

 ■ The objective of the DevOps coach is to help teams develop their
DevOps capabilities in order to rapidly become self-sufficient and not
need the coach in the long term.

 ■ The DevOps coach helps teams adopt the right team model of squads
and tribes (which I will introduce later in this chapter) to develop a
cross-functional team addressing all their skill requirements.

 ■ DevOps coaches drive communication, collaboration, and group
dynamics, and work on increasing trust between team members.

 ■ DevOps coaches need to raise issues and drive change to remove imped-
iments to adoption.

 ■ DevOps coaches need to be the link between multiple projects in the
organization, and with the CoC, to ensure uniformity and standardiza-
tion of DevOps adoption across the organization.

 ■ DevOps coaches need to run experiments within the teams they are
coaching to learn which variants of DevOps methods and approaches
work best for the team, with which enhancements, if any.

 ■ DevOps coaches own the responsibility of harvesting success stories,
lessons learned, and suggested improvements back to the CoC, to share
with other teams in the organization.

 ■ DevOps coaches themselves need to have an attitude of continuous
improvement for their own capabilities and skills.

Setting up a CoC
Setting up a CoC requires senior management-level sponsorship. It is a sig-
nificant investment. In order to get this buy-in, the CoC should begin as a
startup. It should operate by developing itself as a minimum viable product,
or MVP, with staffing coming from volunteers from various projects to fill
the roles. The hypothesis this MVP needs to prove is that a CoC can have an
impact on the business results of a project by helping the project adopt DevOps
practices. This hypothesis needs to be proven by running it against multiple
pilot projects, showing improvement in the projects, and improvement in the
CoC itself as it iterates with each pilot project. Once the hypothesis has been
proven, and proven as something that can be repeated with similar results, a
business case can be made to get sponsorship and funding for the CoC.

The first CoC meeting at a large multinational financial services company
was a Friday afternoon brown-bag lunch where I was invited as an external
speaker. Today, over three years later, the CoC has over 3,000 members in its
global virtual community.

Chapter 6 Scaling devops for the enterprise 273

play: developing Culture of innovation
at Scale

The most important benefit of DevOps is its ability to drive innovation at scale. The
pace of business requires faster software delivery. Instead of taking months to develop
and release a new capability, the target should be to introduce innovations in weeks
although some businesses demand innovation daily.

No longer do businesses have the luxury of “tweaking” their way towards sustained
innovation. They need to reinvent themselves to stay relevant, particularly in the way
they deliver software, which is increasingly the lifeblood of market differentiation and
innovation.

—Jeff Smith, IBM CIO (Smith, 2015)

As IBM CIO Jeff Smith states here, the eventual goal is to scale a culture
of innovation across the organization. While DevOps enables this, changing
the culture requires a concerted organization-wide transformation. It requires
a transformation that affects how each and every line of business, division,
program, project, team, and individual approaches their daily tasks, as well
as how they approach delivering the value asked for by the business.

This transformation requires a change in how teams are structured. (The
team models have a dedicated play that I discuss later in this chapter.) The
transformation requires a change in how teams break down large, complex
application development and delivery efforts into smaller batches and deliver
them and get feedback from the business and users in shorter cycle times.
Even before you get to the development and delivery phase, the transforma-
tion requires that teams—from the line of business to Dev to Ops—ensure
they are delivering the right thing. Innovation at its core requires continuous
experimentation to validate the hypotheses with which the business is striving
to deliver business value to its customers.

Let’s examine how such a culture can be established—and, more impor-
tantly, how such a culture can be established at the scale required for a large,
distributed organization. In order to do so, all the stakeholders need to be
continuously asking several questions, for example:

 ■ How do I understand who the end users are and what needs of theirs
the organization is looking to fulfill?

 ■ As the users fulfill their needs, how do I determine what outcomes the
organization is looking for?

DevOps Adoption Playbook274

 ■ As the users interact with the business via the application or service
delivered, what user experience do I want them to have?

 ■ What experiments need to be run to ensure that the organization has
correctly understood the following:

 ■ Who are the users?
 ■ What needs are we looking to fulfill?
 ■ What outcomes are we looking for?
 ■ What is the desired user experience?

 ■ How can I break these experiments down to minimal viable products
or features that can be delivered with minimal investment to get rapid
feedback?

 ■ What metrics need to be measured to validate an experiment’s success
or failure?

 ■ What is the next set of goals that need to be delivered to keep moving
forward as experiments are run?

 ■ How can the work be broken down into components and assigned
to small teams while ensuring the teams remain aligned toward the
broader delivery roadmap?

 ■ How can teams keep validating their progress?
 ■ Who owns the overall vision for what needs to be delivered, while the

individual teams run experiments at a lower granularity?
 ■ How can I measure progress and create an environment where a series

of failed experiments is a measure of progress?
 ■ How can I retain the focus on developing for the user, as teams grow

larger and more distributed?
 ■ How are duties and responsibilities distributed across teams and

stakeholders?
 ■ How do I prioritize work in an experimentation-focused development

model?
 ■ How do I visually communicate the end goals of a certain user experience

that needs to be delivered across all the components being delivered?
 ■ How do I create a culture where anyone on the team can question what

is being developed and how it is being developed?
 ■ How do I ensure I am asking the right questions?
 ■ Regarding the goal of delivering small batches and getting feedback in

a short cycle time, how do I capture this feedback and communicate it
effectively to all stakeholders?

Chapter 6 Scaling devops for the enterprise 275

 ■ How do I consume the feedback received and make adjustments to what
is being developed and delivered?

There are two approaches that introduce this level of thinking and abil-
ity to look at every project, every task, and every process through a lens of
experimentation in order to innovate:

 ■ Lean startup
 ■ Design thinking

I introduce both of these approaches in Chapter 5. The core themes of Lean
startup are repeated here, but you can find more detailed descriptions in the
section “Lean Startup” in Chapter 5:

 ■ Eliminate uncertainty
 ■ Work smarter, not harder
 ■ Develop a minimum viable product
 ■ Validate learning

The core themes of design thinking are also repeated here. Again, you can
find more detailed descriptions in the section “Design Thinking” in Chapter 5:

 ■ A focus on user outcomes
 ■ Diverse empowered teams
 ■ Restless reinvention

The synergy and alignment of goals between these approaches is clearly
visible. Lean startup provides the core approaches needed to operate like a
startup—an organization designed to fulfill a business need that is not fully
defined, but the business has a “not-yet-validated” hypothesis on how to
address it. A startup thus has to run several experiments to validate its mul-
tiple unknowns: the business problem, the proposed solution, the existence
of a market to monetize, and the ability of the team to deliver the solution.

A startup is a company working to solve a problem where the solution is not obvious
and success is not guaranteed.

—Neil Blumenthal, cofounder and co-CEO of Warby Parker

DevOps Adoption Playbook276

Design thinking, on the other hand, provides a methodology to construct,
deliver, and leverage these experiments to progress the organization toward
a viable solution that is a match to its users’ needs and expectations.

[Designers] don’t try to search for a solution until they have determined the real
problem, and even then, instead of solving that problem, they stop to consider a wide
range of potential solutions. Only then will they finally converge upon their proposal.
This process is called “Design Thinking.”

—Don Norman, author, The Design of Everyday Things

The goal of design thinking is to understand the users’ needs and deliver
outcomes continuously. Design thinking achieves this through a continuous
loop that consists of the following:

 ■ Observing—getting to know the users and understanding their needs
 ■ Reflecting—forming a point of view upon which to develop plans to

address the users’ needs
 ■ Making—building prototypes to give concrete form to ideas and explore

possibilities to deliver real outcomes

Design thinking further provides a mechanism to allow this loop of observe-
reflect-make to solve complex problems, leveraging a large number of teams.
This mechanism is also made up of three components:

 ■ Hills. This is a list of up to three of the most important user outcomes that
need to be achieved. Hills leverage users’ needs into project goals and targets.

 ■ Playbacks. This involves bringing the teams together to review and
reflect on what has been delivered to date for the hills being worked
on, and to get “safe” criticism and feedback.

 ■ Sponsor users. These are real users who are the touchpoints between
the organization and the real world. They provide the users’ perspective
through the observe-reflect-make cycle.

the offering management team
Organizations like IBM have adopted Lean startup and design thinking in
tandem to develop a culture of innovation across the organization. IBM has
done so by creating a new role within IBM called offering management.

Chapter 6 Scaling devops for the enterprise 277

IBM Offering Management is IBM’s point-of-view on markets, users, products, and
services. Offering managers decide in which markets IBM will play and how we will
differentiate in those markets via unique functionality, great user experiences, digital
engagement, and ecosystem partnering.
 Offering managers are empowered to act as entrepreneurs to explore new
markets of users with new user experiences. They are responsible for leading the
co-creation of “whole” offerings that deliver value across all of the six universal
experiences.

—IBM Design Thinking Field Guide, 2016

The six universal experiences mentioned in the quote that an offering man-
agement team needs to focus on are in place to help them view all decisions
from a user experience perspective. They are as follows:

 1. Discover, try, and buy—How do I get it?
 2. Get started—How do I get value?
 3. Everyday use—How do I get my job done?
 4. Manage and upgrade—How do I keep it running?
 5. Leverage and extend—How do I build on it?
 6. Support—How do I get unstuck?

It is important to note how the questions for these experiences are worded.
You can’t read this without feeling like a user. It’s not possible to even state
them without putting yourself in the shoes of the user. It makes asking the
questions a very powerful exercise.

Setting up an offering management team like IBM has done allows orga-
nizations to provide holistic ownership of the products and services across
their product lifecycle, not just on a transient basis, as has been typically
done. As time passes and the market changes, the products and services being
offered will change. However, if the organization as a business survives these
changes, it does so by evolving what it offers to its customer base. It changes
its offerings to include new products and services to fulfil the needs of the
market. Companies like Apple have gone from having desktops as their pri-
mary product, to music players, to laptops, and now to mobile devices. The
offering management team leading the company evolved their products as
the markets changed and their users’ desired experiences changed. And in
the case of Apple, they developed entire new markets that users did not even
know they wanted (think iPad devices).

DevOps Adoption Playbook278

Consider a sports franchise offering solutions to address the business need
of how fans can engage with their sports team. At the end of the day, their
customers are their fans—not the athletes, not the TV networks, and certainly
not the sponsors. In the old days, they engaged with them only at the playing
field—through selling tickets and concessions. That evolved into selling jerseys
and hats and other mementoes. Then came radio and television, which allowed
them to engage with fans who did not even need to be geographically close to
the franchise’s location. This expanded to the web and to mobile apps. Today the
focus of fan engagement is all through social media. The team’s offering manage-
ment group owns this evolution and any future evolution that may come. They
are responsible for delivering new offerings to allow fans new user experiences
by which they can engage with the team. They are responsible for retaining and
growing this market and growing the team’s business value. The individual
products they delivered are transient in nature. Their offering—allowing fans to
engage with the team—is permanent, at least as long as the sports team exists.

To summarize, design thinking is technology agnostic. In fact, it is con-
text agnostic. You can use design thinking principles and methods to plan a
vacation or design a home. A sports team can use it to develop new plays for
the next match. You can (and I did) use it to develop a book. It provides a set
of tools to think—for example, about continuous innovations, and of continu-
ous improvement. It delivers on the core thinking needed to adopt a DevOps
culture across an organization of any size.

play: developing a Culture of Continuous
improvement

improving College footBall playS

[If] you were to ask a longtime defensive coach like Manny Diaz where the
sport is heading, he’d point you to a signature moment in the most thrill-
ing game in recent memory: Auburn’s victory in the 2013 Iron Bowl over
mighty Alabama.

But Diaz wasn’t as struck by the “Kick Six” touchdown that sealed the
deal for the Tigers, nor the budding Saban-vs.-spread rivalry. Instead Diaz
zeroes in on a play by Auburn quarterback Nick Marshall, one ending 31
seconds before Chris Davis’ 109-yard game-winner.

Chapter 6 Scaling devops for the enterprise 279

The triple option in (American) football is a play where the quarterback
has choices he can make when running the play. There is a “master” play that
is called, but the final choice is made by the quarterback—whether to keep
the ball and run himself, to pass the ball to the fullback, or to pitch it to the
slotback who has moved in place (Davie, 2015). And, of course, as in the 2014
Iron Bowl play described above, to improvise and pass it to a free receiver,
after beginning to run with it. A culture of continuous improvement comes
from empowering stakeholders to act upon any opportunity for improvement
that they may identify in the application delivery pipeline. It is where the
stakeholders are empowered so they don’t blindly follow the play called but
have the option to make, or at least suggest, changes to improve the play. It is
what the Toyota Production System in Japan calls kaizen.

“It’s the most significant thing to happen to college football,” the 17-year
coaching veteran says. “The most important play of last season was the
touchdown that tied the game at 28.”

The play in question started out as a standard zone-read play, one
Auburn had been running the entire season. It was at this moment that
Gus Malzahn’s offense brought football’s future to the biggest stage.

The workings of the play are standard. It kept with what’s become famil-
iar to even NFL fans … up until the end.

The offensive line started to block for an inside zone play. As far as the
linemen knew, they were blocking straight ahead for another Tre Mason
run. The fullback, Jay Prosch, arced around the unblocked defensive end
to provide a lead block on the edge for Marshall, in case the quarterback
got a “keep” read.

The addition of a lead blocker on the edge for the QB has caused enough
trouble for college defenses, but that wrinkle is one Alabama already knew
was coming. Marshall saw the defensive end stay inside, giving him the
sign to keep the ball and follow Prosch’s block on the edge.

This is where things got interesting. Marshall made an additional read
to determine whether his X receiver, Sammie Coates, was being covered or
not. Since both the free safety and corner came up to stop the quarterback
keeper, he awkwardly pulled up and tossed a hitch route to Coates.

Touchdown. The Iron Bowl is tied. College football has been changed.

—Boyd, 2014

DevOps Adoption Playbook280

developing an adoption roadmap
I discuss the concept of an adoption roadmap in earlier chapters in this
book. An example adoption roadmap is also presented in Appendix A. Such
a roadmap has been found to be essential to scaling DevOps adoption in a
large enterprise. If a small, isolated team is adopting DevOps, the team can
autonomously determine what practices to adopt and in what order and get all
the relevant stakeholders engaged. However, when I speak of multiple teams
adopting DevOps, in parallel, but not necessarily in a totally synchronized
manner, having a master roadmap for each team to follow becomes essential
to allow for a structured and organized adoption that does not result in teams
adopting practices in a manner that may impact other teams adopting different
practices in a negative way.

The adoption roadmap is typically developed at an enterprise, line-of-
business, or division level, and rarely at a project level. These levels may vary
in name and size, depending on the organization in question and what the
boundaries of separation of responsibilities are within the organization: is the
IT team shared across the organization, or does each unit or division have its
own IT team? The roadmap is thus designed to provide a blueprint that all
the projects in the unit or division can leverage, allowing for the adoption to
scale. The goal is to ensure that you do not end up with multiple flavors of
DevOps being adopted by various teams but that each team adopts DevOps
following the master roadmap, with low-level customizations and enhance-
ments for their specific needs.

aChieving Kaizen

The philosophy of kaizen is one of Toyota’s core values. It means “continuous
improvement.” No process can ever be declared perfect, but it can always
be improved.

Kaizen in practice means that all team members in all parts of the organi-
zation are continuously looking for ways to improve operations, and people
at every level in the company support this process of improvement.

Kaizen also requires the setting of clear objectives and targets. It is very
much a matter of positive attitude, with the focus on what should be done
rather than what can be done.

—Toyota Production System

Chapter 6 Scaling devops for the enterprise 281

In addition, the adoption roadmap needs to be a living document and, in
the true spirit of kaizen, to be continuously improved based on feedback from
the teams adopting it and based on market, business, technology, and team
changes. Market forces may change, requiring a change in the business goals
and focus of the organization, as in the following examples:

 ■ An outage may shift focus to quality from speed.
 ■ A competitor posing a new threat with a truly innovative product may

require changes to the products being developed.

Changes in technology can trigger the need to update how the roadmap is
being adopted, especially in how automation is being implemented, as in the
following examples:

 ■ New technology becomes available, which was not available or mature
enough before. In recent years, maturing of containers is an example
of such a scenario.

 ■ Older technology may become obsolete. For example, a software vendor
may stop supporting or developing a version of software being used,
leading to its end-of-life.

 ■ The organization may decide to shift platforms or technology vendors,
causing significant changes to be made to the DevOps platform.

Lastly, changes to the team may result in a need to change the adoption
roadmap, as in the following examples:

 ■ Changes in the team model to new squad-based teams
 ■ Retirements, attrition, or “resource actions” that cause people on the

team to leave
 ■ New hires being brought on to the team
 ■ An outsourcing service provider being changed

As a result, there needs to be an owner of the adoption roadmap. This owner
(or owners) also needs to have a well-defined change management process to
update the roadmap. There are two sources of updates to the roadmap:

 ■ Feedback from the teams adopting the roadmap
 ■ Re-running the value stream mapping exercise to capture changes

DevOps Adoption Playbook282

Continuous improvement and value
Stream mapping
When it comes to leveraging value stream mapping to drive a culture of con-
tinuous improvement, there is tremendous value in re-running the value
stream mapping exercise—as either a formal workshop or an informal, ad hoc
exercise—on a regular basis. This exercise will keep identifying the current
bottlenecks and sources of waste in the delivery pipeline. However, running
a formal exercise is expensive, from both a time and resource-investment
perspective. Even running informal sessions requires some expertise with
the person running the exercise. Investing in developing this expertise is a
good value addition. The DevOps CoC is a good place to have people with
value stream mapping skills, for both formal workshops and ad hoc sessions.

That all being said, educating all practitioners about the basic concepts of
value stream mapping itself delivers long-term benefits. It enables people to iden-
tify sources of waste in any process they encounter. This is invaluable. Ultimately,
the goal is continuous improvement. As I mentioned earlier, the way to achieve
true continuous improvement is to empower each practitioner to identify and
act upon addressing the bottlenecks and sources of waste in the processes they
themselves work with. The key here is being able to identify the root cause of the
waste. Here, knowing how to perform value stream mapping helps.

Let’s revisit, from Chapter 2, how you look for sources of waste in a value
stream map of the delivery pipeline. In order to identify sources of waste, you
need to look at the following:

 ■ Artifacts
 ■ Stakeholders
 ■ Environments
 ■ Processes

The inefficiency and waste can exist in any of these four areas. Let’s revisit
the list in Chapter 2 of sources of waste in these areas:

 ■ The process is inefficient.
 ■ The process is manual.
 ■ The artifacts are not in the right form.
 ■ Handoffs between stakeholders are inefficient.
 ■ Stakeholders are unable to perform tasks in the processes.

Chapter 6 Scaling devops for the enterprise 283

 ■ Stakeholders do not have access to the artifacts they need, when they
need them.

 ■ Stakeholders spend time on unnecessary tasks.
 ■ Stakeholders work on unnecessary artifacts.
 ■ Processes are overburdened by governance.

So, how do you develop a culture of continuous improvement? You do so
by creating a mentality in each practitioner to always examine the artifacts
they work with, the stakeholders they interact with, the environments they
work in, and the processes they execute, and examine them to see if any waste
exists. Here are some examples of questions they need to ask:

 ■ Is this artifact necessary? Will it add any value to the development
delivery process or to the end-user?

 ■ Am I receiving the artifacts in a form that I can consume without
unnecessary transformation or work? Is that true for the stakeholders
to whom I pass on the artifact?

 ■ Is the operation I am executing on the artifact adding value to it? Who
will consume it once I change its state? Am I adding value to that
stakeholder?

 ■ Am I making the state changes to the artifact in the most efficient
manner?

 ■ Do I have visibility into the entire delivery pipeline for the artifacts I
am working on?

 ■ Are my interactions with other stakeholders necessary? Do they add
value to my work? Do I add value to their work?

 ■ What artifacts are we exchanging when we interact, and why?
 ■ What processes do we execute, and are both of us needed to execute

the processes?
 ■ Is my interaction with the stakeholder efficient, or is one of us having

to wait for the other, or a third stakeholder?
 ■ Am I working in the right environments?
 ■ Are the environments configured the way I need them to be, or do I

need to spend time and effort to reconfigure them?
 ■ Am I able to efficiently execute the processes I need to, in the environ-

ments I need, when I need them?
 ■ Do I need to wait for an unreasonable amount of time to get the environ-

ments I need or to get them configured the way I need them?

DevOps Adoption Playbook284

 ■ Is the process of getting the artifacts and tools I need in and out of the
environments an efficient one?

 ■ Am I working on the right development and delivery processes to add
value to the processes or to offer value to the end-user?

 ■ Am I executing the processes in the most efficient manner?
 ■ If there are other stakeholders I need to collaborate with to execute the

process completely, do I have visibility into what they are working on?

If every stakeholder in the application delivery pipeline can continuously
ask these questions as they do their daily work and they are empowered to act
on reducing the waste they identify, you are moving toward achieving continu-
ous improvement. True organization-wide continuous improvement will, of
course, require such a culture to permeate the entire organization, across all
levels—from practitioner to senior executive management.

play: team models for devops
How do you develop a scalable team model for DevOps? You need a team of
cross-functional stakeholders (as illustrated in Figure 6-1) with the following
parameters:

 ■ All the cross-functional skills needed for their work are available to
the team, through either dedicated team members or shared resources.

 ■ They can communicate and collaborate without the organizational silos
disrupting their ability to work together.

 ■ They have visibility into each other’s work.
 ■ They are able to pass artifacts back and forth across an integrated

toolchain.
 ■ They are small enough to foster the agility and independence needed

to operate.
 ■ They are scalable to large, distributed teams by replicating the small

team in large numbers.
 ■ These sets of teams are able to communicate and collaborate with each

other, thus requiring integrated tools and standardized processes.
 ■ There are overarching governance models to manage the teams at scale,

while allowing individual teams to operate with autonomous agility.
 ■ The stakeholders in the team are able to report into existing reporting

chains and are matrixed into the team.

Chapter 6 Scaling devops for the enterprise 285

 ■ Stakeholders with specialized skills are able to share their time across
multiple teams. Enterprise architects, security specialists, and network-
ing experts are some examples of stakeholders with such skills.

 ■ Stakeholders with similar skills are able to collaborate and share lessons
learnt and best practices, across teams, effectively having overlaid com-
munities of their own. Think: a community of Heat pattern designers.

 ■ The app and system architectures support development and delivery
of components by individual teams, which are to be integrated and
tested continuously.

 ■ The team models are repeatable to assemble larger teams, and the mod-
els allow for geographically distributed teams.

Chapter

Chapter

Squad Squad Squad Squad Squad Squad Squad Squad

Chapter

Tribe Tribe

Guild

Chapter

Figure 6-1: Squads, tribes, chapters, and guilds (image by Shreya Sharma)

The music streaming company Spotify has created exactly such a teaming
model, pictured in Figure 6-1. This model, introduced in a paper by Henrik
Kniberg and Anders Ivarsson (Ivarsson, 2012), has been adopted, with varia-
tions, by several large, distributed organizations like IBM for their own develop-
ment teams. While the original work on the model referred to it as an approach
to develop scalable teams for Agile process adoption, today the model is used
at Spotify and elsewhere for DevOps adoption. Here are the core components
of the model:

 ■ Squad. A squad is the smallest unit of a team. It operates like a mini-
startup that communicates directly with its stakeholders and focuses

DevOps Adoption Playbook286

on developing and delivering one unit of functionality in the overall
application being delivered. The squad members own this functionality
for a long period of time. Typically, a squad owns a user story. A user
story is an Agile methodology term used to describe the requirements
for a feature from the perspective of how it would be used.

Using a football analogy, a user story is a particular play the team
runs in order to move the ball forward. The squad is the players brought
on the field by the play callers to execute the play. For example, a dedi-
cated special-plays squad may be called in for a fourth-down play where
the team is going for a down, instead of the punting squad.

 ■ Tribe. A tribe is a set of squads that are working on related functional
areas of the app. Together the tribe may own the entire app, or an epic or
hill. An epic is an Agile methodology term used to describe a set of user
stories that go together to capture a large set of functionality. Typically
the highest-level epic maps to a Design Thinking Hill.

Squads will have dependencies on other squads within the tribe.
They may also have dependencies across tribe boundaries. The tribe
should not create impediments or silos to stifle open and free com-
munication and collaboration between squads across multiple tribes.

To continue the football analogy, an epic is the set of plays the team
is working on to get the ball to the end zone. They may not yet know
what individual plays they will run as they move the ball forward, but
they have a broad plan, given the score, the players they have available,
the playbook they have mastered, and the time left on the clock. The
offense is a tribe in the team and so is the defense, with special teams
as the third tribe.

 ■ Chapter. A chapter is a team of practitioners working on the same prac-
tice areas across squads, but within the same tribe. Members of chapters
communicate and collaborate to learn from each other by sharing best
practices and lessons learned from their individual squads. So, all of
the infrastructure in a tribe may meet regularly to discuss IaaS needs,
issues, and challenges for the applications being delivered by the tribe.

Continuing with the football analogy, there are chapters of running
backs, receivers, and linebackers on each team. The O-line and D-line
are chapters. They have dedicated coaches working with them, and they
help each other become better at their specific skills.

 ■ Guild. A guild is essentially a chapter, but across tribe boundaries.
Guilds also include any stakeholder who may be interested in their

Chapter 6 Scaling devops for the enterprise 287

practice area. Examples would be a testers guild, a security guild, a
docker guild, and so on.

If such a thing existed in football, a guild would be a special inter-
est group of running backs, receivers, and linebackers, across team
boundaries, for all the teams in the NFL. Punt return specialists would
be welcome to the receivers guild. O-line players and D-line play-
ers would be welcome to each other’s guilds. The parking lot of the
quarterback guild meeting would surely be an interesting showcase
of performance cars.

play: Standardization of tools
and processes

Standardizing gymnaStiCS SCoreS

For over 80 years, gymnastics was based on a point scale that ranged from
one to ten. A perfect score of 10 was the stuff of legend (as seen with Nadia
Comaneci) and the ultimate goal of every gymnast. But after Comaneci and
the 1976 Olympics, judges started to become more liberal with their scores
and the “10” lost much of its significance.

In the 1984 Los Angeles Olympics, for example, 44 perfect tens were
handed out. As a result of score inflation, it became increasingly difficult to
differentiate between a good routine (performed well and with high levels
of difficulty) and an excellent routine (performed perfectly and with an
even higher degree of difficulty).

In the 1990s, the International Federation of Gymnastics (FIG) felt that
too many 10s were being awarded and decided to overhaul the entire sys-
tem. They gave routines start values based on level of difficulty and the
succession of tricks in the routine. Any error would deduct from that start
value—making it virtually impossible to score a 10.

This scoring system stood throughout the 1990s. However, in 2004 at
the Athens games, controversy erupted. American Paul Hamm was awarded
the gold medal in the men’s all-around competition after winning by only
12/1000s of a point. Later, the bronze medal winner, Yang Tae Young from
South Korea, filed a protest claiming that his final score on the parallel bars
was inaccurate because it was mistakenly given an incorrect start value. If

continued

DevOps Adoption Playbook288

I have discussed the need for people and processes to be fungible across
teams and projects and across squads and tribes. I have also discussed how
there needs to be visibility and end-to-end traceability across teams and projects.
In order for there to be true measurements of the right metrics, the metrics
also need to be standardized across projects and teams. Just like the scoring
of two elite gymnasts in the Olympics, you cannot compare the performance
improvement of two teams if they are being measured differently.

To achieve all of these—fungible people, and visibility and traceability—a
standardized set of integrated tools is required. Standardizing all the appli-
cations delivery pipelines in an entire to one tool set is unreasonable. As I
have discussed before, organizations are not monolithic. Different business
units, divisions, and projects need to use different technology stacks, either
because that is what they are standardized and enabled on or because that is
the stack their application needs. You cannot switch all applications to Node.js,
or deploy them all on the mainframe.3 However, having tool sprawl leads to
chaos when it comes to achieving the goals described here. There needs to be
a middle ground, which allows teams to retain their technology stack, while
allowing for the standardization, visibility, and traceability goals. The middle
ground comes down to limiting the tools to a minimum set of integrated tool

the start value for the routine had been correct, Young—not Hamm—would
have won the gold.

A huge controversy ensued. Three of the judges were fired, Hamm was
asked to give up his medal, then asked to share it, and finally after a lengthy
court process, was officially recognized as the winner.

Spurred by this controversy, in 2005 the FIG changed its code of points
to reflect a new way of differentiating between gymnast’s routines. The
perfect 10 was dismissed for a new, more complicated judging procedure
that analyzed performances based on starting difficulty and execution. In
the current system, a good score is usually in the mid-to-high 16’s—not
quite the same ring as the perfect 10, but possibly more fair and accurate
for the competitors.

—iSport.com

continued

3 My friends from the mainframe world will strongly disagree with this statement, especially
with the availability of zLinux and OpenStack for the mainframe.

Chapter 6 Scaling devops for the enterprise 289

chains, providing from one to (at the most) two tool chains per technology
stack. Integration is the key goal here. That being said, you need tools that are
pre-integrated out of the box by the vendor or tool provider. The last thing an
organization needs is the overhead of maintaining home-built point integra-
tions between tools.

Standardization of an integrated devops platform
There are certain tools that are commoditized in the manner in which they
are used by practitioners. They have minimal impact on other practitioners
and thus do not need to be standardized or integrated. Take, for example, an
integrated development environment (IDE). As long as all the developers in
a squad use the same IDE, it really does not matter if a squad they interact
with uses another IDE. On the other hand, standardizing code repositories is
essential as they become the collaboration tool for developers to share code
among their peers within and across squads and tribes. The guild of develop-
ers should decide what their standard for code repositories is, and as long as
all their IDEs can leverage it, it will serve its purpose.

The organization thus needs to determine which tools and platforms need to
be standardized and which do not. For the ones that need to be standardized,
typically one to two standards should be determined for each technology stack.
(There will always be exceptions, and the number will be higher than two for
large organizations with complex structures.) Tools that are determined to not
need to be standardized should be integrated into the rest of the delivery pipe-
line. The flow of artifacts across a delivery pipeline, the visibility into work,
and end-to-end traceability are all prerequisites for any tool that is selected.

IBM has addressed this need for both standardization and integration by
developing an open toolchain for their Bluemix PaaS (Brealy, 2016). IBM’s open
toolchain is pictured in Figure 6-2. In order to allow third-party vendors to
add their tools to the tool chain, IBM has also developed a Toolchain SDK.
This SDK allows brokers for any tool to be built and made available in the
Bluemix PaaS as a service in the tool catalog, which can be added to the tool
chain being built by an application development team. The architecture for
building a toolchain on IBM Bluemix is shown in Figure 6-3.

Platforms always need to be standardized. While teams will choose the
platform that is right for them, the platform should be one that is acceptable
to the operations teams, and that can be put within the governance model of
the IT organization. Otherwise, you have shadow IT.

DevOps Adoption Playbook290

As I discuss in Chapter 4, for cloud platforms, leveraging technologies like
OpenStack, Cloud Foundry, or Docker Containers allows you to standardize
on platforms, without limiting the agility the teams need, and thus to deliver
consistency with choice. For example, one project may choose to deploy on
virtualized infrastructure leveraging VMware vCenter; another may choose
to leverage the Amazon public cloud; and yet another may prefer a managed
bare-metal OpenStack IaaS from IBM Blue Box. All these solutions can be
abstracted from the developers by using OpenStack Heat to define the infra-
structure as standardized templates or patterns.

Figure 6-2: iBm open toolchain

Figure 6-3: Building a devops tool chain using services on iBm Bluemix

Bluemix Org Bluemix Org

Space

Service Instance

Catalog

Service
Broker

creates

Catalog

Tool
Broker

Tool
Provider

creates

hosts
App

Tool Instance

Toolchain

Container

VM

m m

m m

m
m

deploys

m

m

m

Tool

Chapter 6 Scaling devops for the enterprise 291

play: Security Considerations for devops

the importanCe of goalkeeping

There is always excitement when you hear the rumors that your team is
on the verge of signing that 20-goal striker or the creative genius that will
break down even the most stubborn of defenses. That same excitement is
not always there when that signing is actually [a] new central defender or
an experienced goalkeeper.

In the eyes of the fans, attractive attacking football is always the goal to
aspire to. Looking back through the ages, it is always the free-flowing flair
of the Brazilians and the pass-and-move of the Barcelonas of this world that
appeal to the casual fan. The solid, back-to-the-wall style of the Italians is
hardly a style to set the pulse running.

However, one only has to look at the trophies that the Italians have
accrued both at club level and international level to suspect that there may
be something in this style that breeds success. Their four World Cup titles
are behind only Brazil and Germany, while the likes of Internazionale, AC
Milan, and Juventus are major players in the European game.

There was an interesting quote from Chelsea’s Performance Director,
Mike Forde, in a Financial Times column by Simon Kuper, where he states
that there is a stronger correlation between clean sheets and overall finish-
ing position than there is between goals scored and finishing position.4

—DW on Sport, 2012

4 Clean sheet—when no goals are scored against a team in a match.

One of the commonest pushbacks to introducing DevOps in large organiza-
tions, especially concepts like continuous delivery, and just delivering faster,
comes from stakeholders in the security space. From executives to practitioners
in the security teams, they all express concerns about the impact on their abil-
ity to maintain the security posture desired by the organization.

Security teams, like soccer goalkeepers, are not given the importance by appli-
cation delivery teams that they deserve. In fact, to most application delivery teams,
they are seen as hindering innovation and speed of change. Application delivery
teams are motivated to deliver new and innovative capabilities quickly. Security
teams are determined to ensure that new systems and capabilities are secure and
that security functions are robust. These goals might seem to be at odds.

DevOps Adoption Playbook292

With regard to business outcomes, however, the goals are not at odds at all.
The business outcomes—improved time to value, delivery of innovative busi-
ness solutions, creation of high-quality products, increased market share—all
require both application delivery teams to continuously deliver capabilities and
security teams to continuously secure them. The teams share similar goals but
approach them from different angles.

DevOps introduces an approach of continuous delivery and continuous test-
ing of small batches of capabilities being delivered by an application delivery
organization. Security teams can take advantage of this delivery approach as a
way to reduce security risks. By continuously securing these smaller releases
of functionality, they can identify security vulnerabilities early in the lifecycle
and mitigate the effects early on.

As security teams scrutinize and secure application delivery processes
introduced by DevOps, it is imperative that they also collaborate with the
development and operations teams to secure the DevOps delivery pipelines
and processes. DevOps is not designed to maximize speed at the expense of
security. It is designed to provide rapid feedback from the delivery of smaller
batches of capability, with a short cycle time. This rapid delivery and continu-
ous feedback cycle can help to enhance security. Including security in the
DevOps lifecycle ensures that securing the applications and systems being
delivered is an ongoing process included in the entire delivery lifecycle, rather
than a step that is added to the end of the delivery cycle.

Just as Lean manufacturing revolutionized factory automation and product
delivery, DevOps transforms application delivery. The advent of factory auto-
mation required the development of practices to secure the product delivery
assembly line. Incoming components, line workers, automation specialists,
assembly processes, and other elements had to be secured and validated.
Similarly, security practitioners need to work with the application delivery
teams to secure and validate the application delivery practitioners themselves,
the processes, and the automation tools. Security needs to become an integral
part of DevOps adoption (Elder, 2014).

managing Security-related risks
Businesses fear the risk of residual vulnerabilities in all software that they
use. These risks include the following:

 ■ Vulnerabilities related to the supply chain
 ■ Insider attacks from malicious actors

Chapter 6 Scaling devops for the enterprise 293

 ■ Loss or compromise of source code
 ■ Development process subversions
 ■ Errors and mistakes in the development project
 ■ Weaknesses in the design, code, and integration

These risks apply to any style of software development lifecycle or methodol-
ogy, including waterfall projects, Agile projects, or projects that have adopted
a broader DevOps approach. Because of the streamlined nature and advanced
automation within DevOps projects, events and conditions related to these
risks must be detected and responded to in a continuous manner, throughout
the delivery lifecycle.

For each of these risk areas, special considerations are required for DevOps
adoption, especially when scaling DevOps adoption across the organization.

Vulnerabilities Related to the Supply Chain
As I describe in Chapter 4, any software project that incorporates software
components created outside of the project can be said to have a software
development supply chain. The components might be created by suppliers
within the company or external to the company or organization that owns or
delivers the software project. The security characteristics of the software from
the software supply chain have a significant and lasting effect on the security
of the software created in the project.

In traditional development projects (including waterfall and iterative proj-
ects), it is typical for the development team to evaluate the security character-
istics of software from the supply chain. This evaluation involves reviewing
component documentation, seeking approval based on licensing and support-
ability, and performing security scans.

DevOps development teams gain maximum flexibility by making real-time
design, coding, and integration decisions throughout the project lifetime. For
this reason, the development teams might select supply chain components that
advertise greater functionality and ease of integration and that downplay the
security and assurance properties of the components.

To mitigate this limitation, it is imperative to build rigorous quality checks
into the software delivery process by adopting continuous testing. This prac-
tice includes testing in every stage of the delivery cycle. The tests need to
include security testing of the components and manual and automated code
reviews of every component delivered. Because DevOps encourages deliver-
ing smaller batches to each component in short cycle times, the result is

DevOps Adoption Playbook294

continuous testing of smaller changes to the components as they are delivered.
This approach mitigates the associated risk and speeds up identification of
security vulnerabilities.

insider attacks from actors
Although the exact numbers remain unknown, the evidence in the market-
place shows that over the past few years the percentage of all cyber-crimes
perpetrated by insiders is statistically significant. These attacks can result in
source code loss, source code compromise, or subversion of the development
process. These attacks might originate from the direct action of malicious
insiders, or as a result of malware infection on networks, workstations, or
servers used within the development environment.

To reduce the likelihood of these types of attacks in a traditional devel-
opment environment, the development infrastructure is typically secured
and instrumented for detection and alerting of anomalies. Advanced and
streamlined automation within the DevOps platform increases the dif-
ficulty of instrumentation and detection of anomalies that might result
in source code loss, source code compromise, deployment of malware, or
subversion of the development process. This limitation can be mitigated by
including security testing—both white box and black box security tests—
in the set of testing tasks carried out during the delivery cycle. These
security tests, when run in every iteration or sprint, can detect any such
malicious attacks.

Virtualized, software-defined infrastructure makes it possible for its con-
figuration to be under change control and thereby auditable. The ability to
repeatedly break down and rebuild parts of the DevOps platform helps to
minimize the occurrence of persistent malware on those parts.

errors and Mistakes in the Development Project
Traditional development projects, whether waterfall or iterative, are generally
supported by project management and project tracking tools and systems that
provide orchestrated workflow and task completion checkpoints. In particular,
the release of the finished software product is preceded by a rigorous, extended
project review that includes examination of evidence of completion of major
tasks and milestones.

Projects that apply an Agile or DevOps approach tend to have shorter deliv-
ery cycles in which small components or changes to the software product are
delivered more frequently. Although each set of changes might not be delivered

Chapter 6 Scaling devops for the enterprise 295

to the customer or user, the fast, short cycles can result in less rigorous project
reviews and a less careful examination of completion of major tasks and mile-
stones. These shortcuts can make it possible for development project errors and
mistakes to slip into the development cycle unchecked. However, the goal of
a DevOps project is to deliver smaller components of the software project to
the quality assurance team and to the project review processes to reduce the
risk of larger project errors and mistakes occurring in the first place. Catching
smaller errors early by delivering smaller software component changes more
often reduces overall risk.

Weaknesses in the Design, Code, and integration
If supply chain security is adequately managed and if insider attacks
and project errors are under control, the most significant remaining risk
in development projects is the introduction of weaknesses that can be
exploited after the software has been deployed. These weaknesses might
be introduced throughout the development project in design, coding, and
integration.

You can minimize the likelihood of software weaknesses using one of these
strategies:

 ■ Perform iterative tests and remediation.
 ■ Implement a Secure by Design strategy.

Iterative test and remediation strategies can work on small-scale projects
in which costs and schedules are not constrained and in which comprehen-
sive testing tools are available. Secure by Design development strategies are
maturing at the same time that DevOps projects are emerging. A Secure by
Design development strategy as exemplified by the IBM Secure Engineering
Framework (Whitmore, 2012) can be applied to DevOps.

addressing Security for devops processes
and platforms
The adoption of DevOps automation is similar to the transformation of manu-
facturing systems from being human-intensive to being much more stream-
lined and automated. A detailed comparison of a software supply chain to a
manufacturing supply chain is presented in Chapter 3. Manufacturing pro-
cesses have evolved from delivering inventory in just the right time and place

DevOps Adoption Playbook296

on a manufacturing floor to positioning the steps on the line, to shifting to
controlled, accurate, and high-speed robotic systems, rather than relying on
human hands to install, connect, move, and assemble units.

examples of Vulnerabilities in the Supply Chain
In manufacturing, the existence of multiple suppliers delivering components to
the supply chain introduces vulnerabilities. These suppliers can intentionally
or unintentionally supply low-quality or defective components. In traditional
supply chains, humans notice when something is wrong with the supplied
components, and they raise a flag to alert the line. This manual process miti-
gates risk.

In Lean or DevOps projects in which automation is used extensively, the
automated processes may or may not detect an issue with the supply, depend-
ing on whether the automated elements contain quality assurance checks to
validate the incoming supply.

The mitigation in both cases is to manage and verify the incoming sup-
ply chain. For Lean or DevOps projects, this involves adding testing gates
to replace the monitoring function performed by humans in the past. For
example, a set of automated tests might be implemented to verify that a new
level of an open-source toolkit that has just been received is operating within
specified tolerances for use by the including application.

examples of Preventing insider attacks from actors
In manufacturing, line workers can deliberately leave a fitting incorrectly
connected, can fail to connect something, can insert foreign objects into the
assemblies on the line, or can even sabotage someone else’s work and then
cover their tracks by wiping clean the device.

In DevOps application-delivery environments, automation takes the place
of individual practitioners. However, the programmers of the automation tools
(for example, the creators of Chef automation “recipes” or Heat patterns) might
also insert behavior into the automation that deploys malware, sabotages a
configuration, or otherwise tampers with the system.

The mitigation in both cases is to have checks and balances between work-
ers or, in the case of the automation, to involve multiple checks and balances in
the creation of the automation code. Insider attacks are prevented by scope of
control, auditing, and a requirement for multiple sign-offs and approvals prior
to release. Similar guards and gates can be created as test cases and built into
the automation. Consider that the creation of the automation itself can be a

Chapter 6 Scaling devops for the enterprise 297

possible attack point. The use of software-defined infrastructure under change
management control, where every software-defined element is versioned, helps
mitigate that attack point.

examples of Source Code Loss or Compromise
To apply the manufacturing analogy to software development, source code is
either the raw materials used to create the assembly on the assembly line or is
the blueprints and plans that are followed by the workers to create the assembly.
In either case, destruction or removal of the code or plans, or tampering with
the code or plans, would affect the resulting assembly on the assembly line.

For DevOps application delivery environments, improper handling of the
source code (raw materials or source code used by compilers to build binary
components) can result in tampering or compromise. Tampering with design
materials or instructions used to develop automation (robotic movements or
deployment automation) can cause similar undesired results.

The mitigation on an assembly line is tight control and auditing of both the
raw materials and the plans and designs, along with periodic quality assur-
ance testing that the assemblies match the design and that the raw materials
have not been tampered with. In the DevOps software delivery model, more
automated testing of the assemblies verifies that they conform to the speci-
fications. Furthermore, monitoring, auditing, and enforcing access to design
materials, source code, and source code for the automation (robotic behavior
of code assembly and deployment) ensure that they do not have any security
flaws or vulnerabilities.

examples of Development Process Subversions
In the analogy of a manufacturing assembly line, the line workers might not
follow the assembly line processes and procedures as designed. Every worker in
the assembly line has a standard operating procedure (SOP) to follow. Departing
from these procedures can result in defective products being produced.

In application delivery environments, SOPs exist for the practitioners
engaged in software coding, integration, testing, deployment, and similar
tasks. Departing from these procedures can result in defective software being
delivered. For automation frameworks, errors can be caused by faulty program-
ming of the automation.

In 2012, a trading error at the Knight Capital Group, an international finan-
cial services firm, resulted in a US$440 million loss for the firm; it was traced
back to a deployment engineer not following the deployment SOP properly

DevOps Adoption Playbook298

(Popper, 2012). This error went undetected because the firm did not have suf-
ficient quality checks, automated or human, to validate that the deployment
was done following the proper processes.

To mitigate the risk on the assembly line, you must implement sufficient
training of the line workers on the processes and procedures and institute
oversight and quality checks that continuously ensure that workers are follow-
ing the processes. In the application delivery environment, the processes, the
oversight, and the quality checks can be automated using process automation
and monitoring tools.

examples of Development Process errors and Mistakes
In manufacturing, people make mistakes and errors as they work. Work per-
formed by humans is error-prone. Errors can be introduced by the line workers
and by the people designing the processes for the line workers.

In application delivery environments, errors come in various forms: typos
in code or scripts, errors in documentation, mistakes in data entry, and similar
situations.

To mitigate the risk on the assembly line, you need to implement oversight
and quality control and create robust systems that can prevent errors or catch
them early. In application delivery systems, methods to reduce errors have been
developed over time. Tests can be embedded in code to validate the code and
to validate the appropriate use of the code components in the application. This
goes back to the discussion in Chapter 5 on Antifragile systems, which are the
solution here—assume errors will happen and prepare to build automation to
mitigate them and recover from them. As I discussed before, some organiza-
tions have fully adopted Antifragile systems where if any server instance has
an error, it replaces itself with a new instance and de-provisions the instance
experiencing the error. No attempt is made to fix the error.

examples of Weaknesses in Design, Code, and integration
In manufacturing, handoffs and communication between designers (archi-
tects and mechanical engineers), process engineers (industrial engineers
and team leaders), and assemblers (machinists and fitters) result in ill-fitting
assemblies, changes during manufacturing, bending parts to fit, swapping for
other parts in-flight, and other workarounds. This challenge is exacerbated
by the reliance on contractors or suppliers who are typically outside firms.
One infamous example of a handoff error is the Apollo 13 incident, in which
the change of the voltage requirement for a subsystem of the lunar rocket was

Chapter 6 Scaling devops for the enterprise 299

not communicated to a contractor, resulting in near-disaster during the lunar
flight (Christofes, 2014).

In application delivery, such handoff errors occur as teams hand off their
code to other teams developing code or to teams responsible for integration,
quality assurance, build, and deployment. The challenge is further exacerbated
by the need for multiple suppliers and vendors to complete these handoffs
across company boundaries.

To mitigate the risk in manufacturing, standards are developed for all ven-
dors to follow. These standards, coupled with extensive documentation and
communication about the specifications of components and handoff quality
checks, help mitigate these issues. In application development, industry stan-
dards for component interfaces have been developed, but teams must still rely
on contracts and service level agreements (SLAs) to help mitigate these handoff
challenges. Standard tools that provide automation, rather than manual hand-
offs and deployments, help mitigate the risk that handoffs introduce. Leveraging
integrated tool chains across the organization and its suppliers is essential to
ensure that risk is mitigated when components are handed from the suppliers
to the organization’s application delivery team. I will discuss working with
suppliers in more detail in the section “Play: DevOps and Outsourcing.”

the api economy and Security
In addition to these security vulnerabilities, the trend toward an API economy
introduces additional security concerns. As more APIs become available, the
risk of security vulnerabilities introduced in the APIs themselves or by rogue
users of the APIs can compromise the systems exposed by them. To mitigate
the risk, you need to apply strong testing protocols of the APIs and the appli-
cations using them.

API providers must ensure that the developed API does not expose them
to malicious users who might compromise their systems. These security vul-
nerabilities might have been intentionally or unintentionally introduced by
rogue developers. API consumers must ensure that the data they access or
deliver through the API is secure and that the APIs are appropriately used by
their applications, without exposing them to any security risks. Both suppli-
ers and providers must use proper authentication and provisioning protocols
to ensure only valid use of the API is permitted and no third party is able to
misuse the API access provided. API Security is a core component of most API
management tools, as shown in Figure 6-4.

DevOps Adoption Playbook300

APIs

Security, Metering and
Control Analytics and Monetization

API Lifecycle ManagementAPI Design and Integration

Figure 6-4: api security with api management tools

To mitigate this risk with DevOps principles, you must include rigorous
security testing on an ongoing basis to ensure the robustness of the API secu-
rity. Both API providers and consumers must run rigorous automated tests
of the API with each new release of the API. They must engage in continu-
ous testing to ensure that any misuse or breach of the API is detected and
addressed in a timely manner. These tests must be included in the deploy-
ment process of the API itself to ensure continuous security testing of the API
and of the deployment processes of all the applications that use the API to
ensure that the application is secure. Security testing and security monitor-
ing is a continuum of processing across development, test, and production
environments.

In summary, adopting Lean principles on the factory floor and in software
development leads to reduction of waste and rework. Similarly, just as factory
automation led to a new set of potential security risks and required the adop-
tion of methods to mitigate them, the adoption of DevOps practices can also
lead to novel security risks. This chapter describes some of these risks related
to DevOps adoption and proposes approaches to mitigate them.

The security risks introduced by adopting DevOps—with its rapid delivery
and Agile methods for software development, testing, and delivery—are well
identified and easily addressed. They must not be ignored. Just as ignoring
security risks related to factory automation can result in serious quality con-
trol challenges, not addressing the relevant security risks exposed by DevOps
practices can result in severe quality issues as well. As DevOps evolves from
a philosophy with a set of guiding principles to a well-defined set of practices
with relevant adoption paths, addressing these security risks must become an
inherent part of these practices.

Organizations and teams that adopt DevOps can ensure the mitigation of
security risks by including the organization’s security teams in the DevOps
lifecycle. These teams need to become the stakeholders responsible for ana-
lyzing and determining which risks are relevant to different projects in the

Chapter 6 Scaling devops for the enterprise 301

organization and developing strategies to address and mitigate them. Security
teams must contribute security-centric quality gates to the DevOps environ-
ment as one example point of collaboration.

play: devops and outsourcing

the nBa and outSourCing

It happened years ago. But the tuned out tuning-in to [the 2016] first round
of the NBA Draft witnessed a shocker, an überraschen even.

Foreign-born players constituted 14 of the 30 men drafted in the first
round. If one adds Domantas Sabonis, who fails to make the list because
the birth of the Lithuanian big man occurred in Portland while his Hall of
Fame father played for the Trail Blazers, then foreign players constituted
half of all first-round selections….

Never in the history of the NBA have so many foreign-born players heard
their names said in the first round.

At least one future Hall of Famer who grew up abroad believes players
learn to pass, dribble, and play as a team better outside of the United States.

“I just think European players are just way more skillful,” Kobe Bryant
controversially explained last year. “They are just taught the game the right
way at an early age.”

Outsourcing also works for NBA bottom lines. Not only did Hakeem
Olajuwon, Pau Gasol, and Dirk Nowitzki help teams win championships,
they won the league new fans and revenue. Foreigners pay attention because
the NBA pays attention to foreigners. The league generates more money per
year in their Chinese streaming deal, for instance, than the UFC or MLS
makes in its American television contracts. While Americans lament the
passing of the good old days when Michael, Magic, or Larry played, inter-
national fans see the golden age as now.

—Flynn, 2016

As you look at organizations adopting DevOps, another question that always
comes up is regarding outsourcing. Many (read: most) organizations have at
least some of their application delivery or IT operations outsourced to an exter-
nal vendor. This may be the traditional offshoring where work is offloaded to an

DevOps Adoption Playbook302

external, offshore, and usually cheaper provider, or a true supply chain model,
where external and internal providers deliver components of the application
delivery supply chain. Both scenarios have a significantly different impact on
DevOps adoption.

Strategic outsourcing
This is the scenario where an enterprise decides that it is cheaper or, from a
business perspective, better to outsource all or part of their application delivery
to another provider that excels in that space. This decision to outsource may be
made due to cost or to the simple fact that the organization believes that it does
not need to have that capability in-house; it is better to hire someone to deliver
it. The commonest example would be a company hiring an organization like
IBM to run its data centers. The organization chooses to not hire staff to run
data centers because it makes sense to let IBM do it. Another example would
be a retailer hiring an external vendor to build and deliver its mobile apps.
Again, they may have strategically decided that these are capabilities they do
not have in-house. Instead of building a new mobile team from scratch, they
decide to have it delivered by a company that provides mobile app building
as a service.

In the scenario where the entire building and running of an application
is outsourced, adopting DevOps is not that much of a challenge. When you
outsource an entire application lifecycle, you also outsource the delivery pipe-
line. If the entire mobile app development and operations are outsourced, the
application development and delivery challenges remain limited to ensuring
that the mobile app can access the back-end systems it needs to, hopefully
through well-defined and managed APIs. Now, in the first scenario I described,
if an organization builds an application in-house and delivers it to a production
environment managed by an external vendor, the organization needs to do a
handoff to the external vendor and receive from the vendor the appropriate
feedback to improve continuously. Adopting a continuous delivery model in
such a multi-vendor delivery pipeline can be achieved only with the external
vendor partnering closely with the organization on standardizing application
delivery and feedback practices and tooling between the two.

This does not imply trivializing the planning and collaboration that needs
to be done, but if the external vendor is a true partner, this can be achieved.
The organization whose application it is still needs to own the portfolio man-
agement, planning, release management, and governance of the application
being delivered. And yes, if the vendor is not willing to partner because the

Chapter 6 Scaling devops for the enterprise 303

contracts in place do not provide for a DevOps-style model of collaboration,
the organization cannot proceed without lawyers getting involved and rene-
gotiating the contract.

it Supply Chain
The DevOps adoption challenge becomes more interesting in a supply chain
model, where an entire application delivery pipeline is not outsourced, but
individual components are being delivered by separate providers in the sup-
ply chain. These may not all be external suppliers that the enterprise has
outsourced to. More than likely, as shown in Figure 6-5, they will be a com-
bination of internal and external providers. Internal providers are easier to
deal with. Barring politics and lack of buy-in from senior management, you
can apply the DevOps principles to get the suppliers on-board. Best practices,
such as creating a central, enterprise-wide artifact repository as a single source
of truth, or adopting a standardized, integrated tool set to enable end-to-end
traceability, go a long way toward getting the required buy-in.

Development

External Supplier A

SCM Build Package
Repo

Deploy Test Stage Prod

External Supplier B

Internal Supplier A

Internal Supplier B

Figure 6-5: Software supply chain

If the organization has external providers, the situation can become tricky.
Multiple providers developing and testing individual components leads to
many-to-many coordination and collaboration needs. Contracts get in the
way. If two providers cannot communicate directly with each other and have
to always go through the organization, that is a problem. If every time a busi-
ness owner tries to make a change based on feedback (as required for DevOps
adoption) the vendor pulls out their contract or charges the organization a
change fee, you most certainly have a problem. It is not uncommon to hear
horror stories of organizations whose external infrastructure provider for Dev-
test environments charged $10,000 for each change to the base VM image. If
an organization can’t afford to make adjustments to their environments, then
production-like environments are no longer an option.

DevOps Adoption Playbook304

The only solution here is to try to get the external providers to see their
value in working with the organization and other vendors in the supply chain
to adopt DevOps. If they see the value in the efficiencies and reduction of waste
DevOps can bring to them and that it allows them to deliver higher-quality
software in less time, with fewer resources, that may win them over. If, how-
ever, their contracts are written in a way that faster delivery, more efficient
delivery, or fewer people needed hurts their bottom line, not much can be done.

enabling devops with outsourcing
So, is outsourcing the death of DevOps? Or is DevOps the death of outsourc-
ing? Not at all. Organizations cannot have all the IT skills they need in-house.
They will need to bring expertise in from external vendors. Outsourcing is
here to stay. The advent of DevOps and the need for collaboration, agility, and
responsiveness to feedback that is needed to adopt DevOps requires that future
contracts will be written with these goals in mind. This is not an unreason-
able expectation. Most system integrators are already seeing this in request
for proposals (RFPs) they are receiving from organizations looking to partner
with them on a DevOps journey. This is really not an option. All the external
pressures—lowering costs, the need for innovation at speed, and the need to
be more agile and responsive to the market—are compelling organizations to
adopt DevOps. They are also compelling outsourcing vendors to change how
they evolve from suppliers to partners for their clients. DevOps is bringing
on the next generation of outsourcing.

Summary
To summarize this chapter, the key to scaling DevOps adoption beyond the
isolated, co-located, self-contained team, to enterprise scale projects and pro-
grams, is all in culture and teaming. The seven plays introduced in this chapter
are as follows:

 ■ DevOps Center of Competency
 ■ Developing Culture of Innovation at Scale
 ■ Developing a Culture of Continuous Improvement
 ■ Team Models for DevOps
 ■ Standardization of Tools and Processes
 ■ Security Considerations for DevOps
 ■ DevOps and Outsourcing

Chapter 6 Scaling devops for the enterprise 305

These plays are all about how to adopt the DevOps Culture and how to get
the necessary teaming in place, including when an outsourcing or a software
supply chain model may be in place. In addition, as security is a major inhibi-
tor that prevents wide spread DevOps adoption, ensure that it is addressed as
a part of the DevOps transformation.

The themes of this chapter highlight this need for cultural change and for
enabling proper communication and collaboration, across function silos, across
teams, across stakeholders, and across projects. Namely,

 ■ Organizational Culture
 ■ Standardization of Tools and Practices
 ■ Organized Adoption
 ■ Breaking Down Organizational Silos

Eventually, it all depends upon the ability to overcome the cultural inertia
your organization has. To transform the existing culture into one of trust—
where stakeholders can communicate and collaborate freely, without being
burdened by unnecessary governance, arcane policies, disjointed tools, and
rigid team structures. To transform to a culture where practitioners can trust
the work done by the person working next to them.

General ManaGer versus the CoaCh

The role of general manager in the NFL is perhaps the most vital position of
every team. The GM is mostly forgotten on Sundays in favor of the person-
nel on the field. Our focus falls on players and coaches, but those players
and coaches live and die by their GMs. A bad GM will destroy any team. A
good GM can bring you a Super Bowl.

From 2008–10, Scot McCloughan put aside his search for a second “t” in
his name and assembled a roster in San Francisco that would put the 49ers
into the NFC Championship in 2011 and the Super Bowl in 2012. He did
the same for the Seattle Seahawks from 2010–14. The Seahawks did one
better than the 49ers and won the Super Bowl in 2013.

—Foss, 2015

Chapter 7

leading Devops adoption
in the enterprise

Professional American football teams have a critical role in that of a general
manager. Where it is done right—and with many teams it is not done right
(Breer, 2013)—it can make or break a team. This is because while the general
manager is a behind-the-scenes role and it is the players and the coaches on
the team who get to play and win or lose games, it is the general manager
who is responsible for putting the actual team together in the first place. The
general manager also sets morale by managing salaries and, most importantly,
by managing the culture of the team. Whether the role of the team executive is
played by the owner (think Jerry Jones and the Dallas Cowboys), the general
manager (like it should be), or the coach (think Bill Belichick and the New
England Patriots), the responsibility cannot be taken lightly.

The DevOps Adoption Playbook: A Guide to Adopting DevOpsin a
Multi-Speed IT Enterprise
By Sanjeev Sharma
Copyright © 2017 by John Wiley & Sons, Inc., Indianapolis, Indiana

DevOps Adoption Playbook308

The previous chapters were focused on the players and the coaches. In
this chapter, I will move up the food chain to the executives who make
the decisions to put together, make the business case for, fund, and lead a
DevOps transformation. They are the ones who own the business results
that a DevOps transformation will deliver. They are the decision makers who
need to create the vision that a DevOps transformation effort is setting out
to deliver. Just like football teams, the titles may vary by organization—CIO,
CTO, senior VP, VP, chief digital officer (CDO), or even VP of DevOps—but
the goals remain the same.

Above all, it is the executive’s role to lead from the front. They are the ones
who must drive the cultural change. They must have the ability to step back
and identify the areas of cultural inertia that have set in on the organization
and thus need to be addressed. They must have a vision of what the target
culture needs to look like. They then need to empower their leaders to make
the necessary changes to the processes, governance, metrics, and business
goals being targeted, which will allow the people on the teams to change how
they act. They also need to create a culture of empowerment that goes all the
way down to the practitioners, such that the practitioners are able to ques-
tion the processes, governance, and measurements and suggest changes to
move toward improving them. In other words, they need to enable a culture
of continuous improvement, from the C-suite to the grassroots.

BuilDinG a WinninG teaM

The story of Coach Lad and the Concord, California, De La Salle Spartans
is one of the greatest leadership stories ever told because it gets to the heart
of building a winning team in sports and in business. Here is an extremely
valuable team-building lesson based on the longest-winning streak in sports
history.

Wins are the result of a bigger mission. A great coach knows how to execute
game-winning plays, but inspiration is often about the intangibles beyond
X’s and O’s. “De La Salle doesn’t win because of anything Bob Ladouceur
does. They win because of who he is,” says Hayes.

Coach Lad stands for something bigger than winning games; he stands for
commitment, accountability, and pushing the bounds of human achievement.
“As a coach you can know who to block and what play to call, but it has no
meaning unless the kids know who you are,” says Ladouceur. “Our kids aren’t
fighting for wins. They’re fighting for a belief in what we stand for.”

Chapter 7 leading Devops adoption in the enterprise 309

In this chapter, I present specific plays but no themes as I did in the other
chapters. This is because there is only one theme across all these plays: leading
the DevOps transformation across the organization.

play: Devops as a transformation exercise

Neil Hayes told [interviewer Carmine Gallo] about the moment he realized
that Coach Lad’s story had to be told. It happened during halftime of a game
when his team played poorly. The coach walked into the locker room and
his team “looked at their coach, begging for wisdom, his guidance.” Lad
didn’t give them a traditional pep talk. Instead he said, “Why do I always
have to be the problem solver? Group problem-solving is a skill you will
use your whole life. Figure it out.” And with that the most successful high
school football coach in history walked out, leaving the players to come up
with their own solution. This example is very consistent with Coach Lad’s
bigger mission to use football as a tool to teach life lessons.

—Gallo, 2014

transforMinG a teCh Giant

International Business Machines CIO Jeff Smith wants to practice Agile soft-
ware development and project management at scale, and by scale, he means
a company with a headcount that rivals that of Miami.

Mr. Smith arrived at IBM during the middle of 2014, after serving as CEO
of Suncorp Business Services, a unit of Australian financial company Sun-
corp Group. He led a technology transformation at Suncorp and worked
on the project with tech vendor IBM, which says the effort produced gains
in Suncorp’s quality, cycle time, and cost structure. So IBM hired him as its
new CIO.

Mr. Smith now leads a 20,000-person global IT team at IBM, which cre-
ates tools and services for the IBM workforce of about 380,000 people. Few
companies operate at that scale, which is nearly as large as the city of Miami,
population 418,000. He immediately embarked on an IT transformation for
IBM.

“The mission is to have innovation and the speed of small companies … and
see if we can do that at scale,” he said.

continued

DevOps Adoption Playbook310

It’s a matter of great urgency for IBM, which is in the midst of a painful tran-
sition, the WSJ reported on April 21. “Hardware sales continued their slide
in the first quarter as IBM exited the commodity server business and focused
instead on its more profitable Unix and mainframe computers,” the WSJ’s
Robert McMillan wrote. IBM is betting its future on software and services.

Mr. Smith said his ideas about collaboration and workflow were forged dur-
ing the financial crisis, during which period, he said, Suncorp was cut off
from crucial access to wholesale funding and was days away from going
under. He was responsible for leading the development of technology and
other business services that helped Suncorp survive a brutal transition.

Now, at IBM, which faces business challenges of its own, he has moved the
company away from traditional models of software development. Previously,
the company’s IT group was divided into two main branches, a transform,
or development group, and a run group. “It was more of the classic way that
IT shops are structured,” he said.

There were pockets of IT that used Agile development and DevOps, which
break projects into small units, through which small teams move at top
speed.

In February, he replaced the old system with 25 domains, each with its own
leader. The domains range from a group that develops a cloud environment
to a group in charge of the marketplace where IBM employees can download
the tools they need.

“The key piece is how to break big problems and use the wealth of people
we have around the world,” he said. “The hardest part is to get the raw tal-
ent. We have that. The talent and the tooling are there. The way of working
is changing. In a nutshell, that is what my mission is.”

—Rosenbush, 2015

continued

Organizations are being pressured to change by the market and by com-
petitors. Transformative change always requires a transformative leader. In
the context of DevOps, the transformative leader needs to be from the IT
organization, like Jeff Smith, as IBM’s CIO, has been for leading how IBM has
transformed its IT processes and systems to become more Agile. While such
transformation already existed in pockets within IBM’s IT department, in
development and delivery teams within IBM divisions and brands, Jeff drove
change across the organization, setting up processes and systems to scale the
transformation across the company.

Chapter 7 leading Devops adoption in the enterprise 311

For any organization to adopt transformative change, in addition to the
change, it also needs a trigger or catalyst. It needs a compelling reason to act on
the transformation effort. Once a reason to act has been identified, the leader-
ship needs to leverage it to act on it. The history of business is littered with
the remains of companies that knew they needed to change, but due to poor
leadership or their inability to leverage a compelling reason to act, they failed
to change and perished. They saw the threat and failed to act, whether the
threat was from a market shift (Eastman Kodak missing the move from film to
digital photography), from a competitor (Blockbuster missing the threat from
Netflix and Redbox), or from legal issues (the entire Napster business model
neglecting a minor legal inconvenience called copyright).

Compelling reasons to act
Let’s examine some compelling reasons to act. Rashik Parmar, VP at IBM, talks
of a similar list in the context of driving cloud adoption. However, most of the
reasons apply to any transformation effort, especially a DevOps transforma-
tion. The commonest compelling reasons to act include:

 ■ Merger, acquisition, and divestiture. Mergers, acquisitions, and divesti-
ture are common reasons to act on a DevOps transformation. Mergers
and acquisitions bring in new people, applications, systems, tools, and
platforms. They also bring in teams with their own processes and,
above all, their own culture. These teams need to be integrated and
brought to a new standardized state, fit for the new, combined organiza-
tion. Conversely, divestiture results in the loss of people, applications,
systems, tools, and platforms, resulting in an opportunity to revisit the
remaining parts and optimize them. Both scenarios bring an excellent
opportunity to drive an organization-wide DevOps transformation.

 ■ Unexpected service interruption. No one wants to be in the news for an
outage. Whether or not it makes the news, the loss of business and repu-
tation can be devastating to your organization. It does not matter if your
organization is a bank that has disgruntled customers who could not get
to their accounts, a coffee shop that could not process payments from
customers, or an airline that had to ground all its planes for hours. When
a service interruption, especially one that has a widespread impact, does
occur, it usually puts the organization in war footing to first recover from
it and then to ensure it never happens again. The latter step is where
initiating a DevOps transformation can be leveraged.

DevOps Adoption Playbook312

 ■ Launch of an innovation initiative. Whether the innovation initiative
is being launched to counter a competitor, a change in the market, or
the arrival of a new externally hired executive, they are all compelling
reasons to initiate a DevOps transformation. Such a reason to act can
be an opportunity for the sponsoring executives to initiate the develop-
ment of an innovation edge at the organization.

 ■ Enhancing IT productivity. While innovation may be the compelling
reason to act for some organizations, for others it will be the need to
significantly enhance the productivity of the IT organization. This pro-
ductivity enhancement requires a focus on optimization, and adopting
DevOps plays for optimization is a necessity.

 ■ Increasing IT agility. Any conversation about increasing agility, in today’s
IT environment, needs to include a conversation about adopting cloud.
As I discussed before, the cloud is an enabler for DevOps (and hence
agility), and DevOps is an enabler for cloud adoption. If an organization
has embarked on a cloud adoption journey, a DevOps conversation needs
to occur on how to deploy to the new cloud-hosted platform and how
to leverage the cloud-hosted platform to deliver in a manner that maxi-
mizes utilization of the benefits and capabilities of cloud services. Thus,
a cloud adoption is typically a superset of a DevOps transformation.

Whatever the compelling reason to act may be, it provides a reason and the
necessary opportunity to make a business and technical case for a DevOps
transformation. Such opportunities are rare in an organization’s life. For at
least some of these reasons (like service interruption or a merger or acqui-
sition), you hope they are rare. These opportunities, when they do present
themselves, should be leveraged as a chance to transform the organization
holistically—its applications, processes, tools, platforms, and culture.

Devops transformation anti-patterns
A transformation works only when it is treated like a transformation. While this
statement sounds redundant, it is critical. Too many organizations fail to
adopt DevOps because their leaders do not manage the transformation with
the focus and effort it needs. They fall into common anti-patterns of adoption.
Some key anti-patterns are listed here:

 ■ The DevOps “project.” There is no such thing as a DevOps project.
Adopting DevOps is not something that is done once and then done

Chapter 7 leading Devops adoption in the enterprise 313

with. Adopting DevOps is a transformation that needs to impact
 everything—processes, automation with tools, platforms, and culture—
and this impact needs to be ongoing so that the end result is a culture
of continuous improvement.

 ■ Lack of ownership. While the executives may own the DevOps transfor-
mation itself, having a clear ownership of the individual transformation
capabilities, across processes, tools, platforms, and culture, is essential.
This ownership must occur all the way down to the grassroots level. You
cannot bring about change without clear ownership and responsibility
of who is responsible for changing what, with what resources, and by
when. You do not transform by edict.

 ■ A wrong focus on just metrics. As I describe in earlier chapters, a DevOps
transformation requires, as a prerequisite, the identification of the right
metrics to focus on improving. However, an overly focused emphasis
on rewarding improved metrics can be harmful. If people are measured
and rewarded to improve a certain set of metrics and there is no focus
on learning, then if and when metrics are not improving, the teams
begin to “game” the metrics. This results in a toxic culture.

 ■ DevOps adoption in islands. DevOps adoption starts with pilot proj-
ects (as I will discuss later in this chapter). However, the goal of the
pilot projects is to learn and replicate successful practices and lessons
learned in other projects. A common anti-pattern occurs when execu-
tives keep this replication isolated to their domain—their own unit,
division, or program. If their domain is self-contained and does not
interact with the rest of the organization, such an adoption will fail to
show desired results. It will certainly not transform the organization
as a whole. In the section “Play: Starting with Pilot Projects,” I will also
discuss the value of selecting the right pilot projects and leveraging the
lessons learned from each pilot project.

 ■ Change of organization reporting structures. The squad and tribe team
model that I describe in Chapter 6 results in the creation of cross-
functional teams and teams that are small but that can scale to larger
structures as tribes. There are, however, many common anti-patterns
that lead to incorrect organizational restructuring for DevOps:

 ■ New leadership roles. Naming someone VP of DevOps, and hav-
ing the Dev and Ops teams report to her, solves very few prob-
lems. Decision making, conflict resolution, budget allocation,
and some communication may become easier, but you still have

DevOps Adoption Playbook314

two siloed organizations that did not change and that are no
closer to having better communication, collaboration, and trust.

 ■ New silos. The other approach to reorganization that does not
work is the creation of new silos. Many organizations redistrib-
ute their stakeholders into new reporting structures that do not
foster cross-functional collaboration across the required func-
tions but are limited to stakeholders included in the new teams.
This only results in old silos being replaced by new ones.

 ■ DevOps teams. There has been a lot of debate on the strengths
and weaknesses of creating DevOps teams (Minick, 2015). These
DevOps teams typically only have Dev and Ops practitioners.
This does not add sufficient value because other practitioners
are left out. It is not a true cross-functional squad. Furthermore,
several organizations make this DevOps team a required stake-
holder to every project. That ends up making it no more than
another bureaucratic team that now has to approve actions by
projects.

 ■ Outsourcing DevOps adoption. While consultants, experts, vendors,
and contractors are all usually essential to help bring the process,
tools, platform, and cultural transformation expertise into an orga-
nization, the ownership of the DevOps transformation cannot be
outsourced. If the team does not see their own executives taking
ownership and leading the transformation, the willingness and
urgency to change will not be driven across the entire organization.
Cultural inertia cannot be overcome by an outside consultant or by
reading this book.

 ■ Communication and collaboration. There needs be true, direct communi-
cation and collaboration between stakeholders. Can they really do so, or
do they always need to go through their respective reporting chains to
communicate? Is collaboration done solely through tickets? Are there
chargeback requirements that stifle stakeholders working across orga-
nizational boundaries? Does a request to a supplier always trigger a
formal change-request process?

 ■ Contracts. This becomes a challenge with external vendors and suppliers.
If there are rigid contracts in place that require vendors and suppliers to
only communicate in a certain manner or that require that every change
in the way a process is executed go through a formal change process of
the contract, there can be no DevOps.

Chapter 7 leading Devops adoption in the enterprise 315

Addressing these anti-patterns is the responsibility of the executives lead-
ing the transformation. This can result in some tough decisions and aggres-
sive changes. New collaboration tools may need to be deployed. Management
will need to give up control to allow free communication and collaboration.
Collaboration across functional silos that is limited to communicating through
tickets alone will need to be eliminated altogether. Self-service catalogs of criti-
cal IT services will need to be made available to practitioners. Contracts will
need to be renegotiated. Vendors may need to be changed. And (hopefully)
lawyers and accountants will need to be fired.

play: Developing a Culture
of Collaboration and trust

Players need to trust and respect the fact that if I do my job we have the best chance
of being successful. I don’t have to make every play; I just need to make the plays I’m
supposed to make in the gap I’m supposed to make them and trust the guy next to me
will do the same.

—Nick Saban, head coach, University of Alabama football team

Why don’t Ops teams in large organizations give direct self-service access to
the production environments to developers, to deploy continuously, as many
startups do? The reason is simple: they don’t trust Dev teams to deliver stable,
secure, and reliable applications. The reality, of course, is not as simple as just
being about a lack of trust. There are several other reasons, including com-
pliance requirements that prevent open access to production environments.
Furthermore, some distrust is actually healthy because it puts the Ops team in
a mode to question and verify what Dev is delivering. However, a complete lack
of trust is not healthy. This lack of trust in large organizations seems to extend
beyond just Dev and Ops. Dev does not trust business analysts. Enterprise
architecture does not trust Ops. QA does not trust the developers. The audit
and compliance team trusts no one. No one trusts management, and so on.
This lack of trust results in teams not being able to effectively communicate
and collaborate across functional silos. This mistrust is a cultural thing.

In his article “The Simple Math of DevOps” (Reid, 2015), Lee Reid (who
was, until recently, a DevOps architect at IBM) proposed a formula to calcu-
late the total time to delivery. In his formula, shown here, Lee puts trust as the

DevOps Adoption Playbook316

denominator, because it determines the efficiency of the touchpoints between
the stakeholders and drives the waste that may occur with handoffs if the stake-
holders do not trust the artifacts they are receiving from other stakeholders.
To quote Lee from the article:

[A] key factor that will determine the speed to value is TRUST. It’s pretty obvious
when you draw out the value stream mapping of how work gets done at a given
customer site. As members of software delivery teams lose trust in the validity of
the work as it flows through the lifecycle … a large amount of rework and waste is
introduced. In mathematical terms our equation becomes:

T =

T + T + T + T + T + T + T

DELIVERY

PLAN DESIGN DEVELOP BUILD DEPLOY TEST FIX

++T + T

% TRUST(0 -1)
RELEASE EVALUATE

That is, the Tasks we do in a delivery cycle are impacted by the degree of trust we
have in the hand-offs from one to another. If we have zero trust then our TDELIVERY
will be infinite (divide by zero). 100% trust and our TDELIVERY will be only limited by
how fast each task can be performed.

How can you build an environment and culture of trust? It is certainly not
by going through “fall-back-into-the-arms-of-the-person-behind-you” exercises.
It comes from building a sense of mission, a sense of team that puts people in a
situation where they begin to work with the person next to them with a sense
of purpose, and an understanding that the only way to succeed will be by trust-
ing the person next to them. They need to trust that the people they work with
understand their roles and believe that they are not only good at what they do
but are going to do the best they can. This sense of trust has to be built from
the ground up. It has to be established by building small teams by leveraging
models like the spotify squad model that I introduce in Chapter 6. Those teams
need to be empowered to operate across functional silos as one unit with a well-
defined mission—a mission they all need to pull together to accomplish. They
then need to scale that model across the organization. Ultimately, people trust
people they know. They trust people they associate with and have fun with.
They trust people who themselves trust the people around them.

visibility enables trust
If there is a factor that can drive an environment and culture of trust, it is
visibility across functional silos. And this is something the executives leading

Chapter 7 leading Devops adoption in the enterprise 317

a DevOps transformation can ensure the organization makes the right invest-
ments in. As stakeholders in the application delivery pipeline work with each
other and hand off artifacts to each other, visibility drives trust. If there is no
visibility across functional silos and something goes wrong, the stakeholders
consuming the artifacts tend to lose trust in the stakeholders they are receiving
the artifacts from. For example, if testers receive code from developers that
keeps failing basic tests, they will start to distrust any code the developers
send them. However, if they have visibility into the various quality checks the
developers did before they handed over the code to them, they will start work-
ing with the developers to determine why the tests are failing. Furthermore,
if the developers know that the testers have visibility into the tasks they per-
formed on the code, they will ensure that they do not send un-validated code
to the testers. This example can be extended to any set of practitioners who
are handing off artifacts to each other.

Visibility also drives trust because it allows practitioners to see who is
working on which task in the team, who the right experts are, and who is
responsible for the artifact they need. Such visibility also enables better com-
munication across the team. Total visibility drives total trust.

it’s all about the people

Effective Leaders avoid becoming the weeds that choke the individual passion and
overall performance out of their team.

Instead, they become the water bearers who nurture, coach and grow individual
passionate seeds into a super star team.

—Ty Howard, former American football player

Ultimately, it is all about the people. The foremost role of the leader is
therefore to foster and develop the people. This begins with recruitment, and
follows through to putting the right people together on a team, all the way to
providing a fun environment where teams thrive and maximize productivity.

If you have the opportunity to visit a startup, one that has moved from the
“latte shop” to a real office space, you see a very different workplace from a
traditional corporate work environment. There are no isolated cubicles, just
open workspaces. There seem to be no titles or even work schedules. People
run around in all kinds of attire—and “run around” is not an exaggeration; in
fact, it may be on a scooter or skateboard. There are beanbags in conference

DevOps Adoption Playbook318

rooms; in fact, the conference rooms themselves may not have formal tables
and chairs. There are whiteboards everywhere. And there is sports equipment
all over, from Ping-Pong tables, to foosball, to video game consoles, to pool
tables. And yes, there is food and beer—a lot of beer. These are all things that
would get both the corporate productivity czars and HR departments up in
arms in large organizations. What large organizations consider “inappropriate”
is considered essential to developing a fun work environment where people
enjoy spending time and working.

Large organizations, on the other hand, have standardized, grayscale cubi-
cles on every floor of every office. There is no sports equipment. Lunch hap-
pens from noon to one. And silence is considered golden. Who would not want
to leave such a place the moment the clock strikes 5 p.m.?

Developing a fun and engaging work environment is becoming a prereq-
uisite to attracting the best talent. Not everyone expects free massages every
afternoon or a keg to be always on tap in the break room, but young, skilled
professionals do not want to spend their lives in an environment they do not
enjoy. The work/life balance of today’s young crowd, especially Millennials,
does not just mean having a life outside work but also having a life at work.

Building a team requires having people who want to work with each other,
who enjoy and are passionate about their work. It is the executive leadership’s
responsibility to foster such an environment.

play: Devops thinking for the line
of Business

teaM oWners transforMinG the nBa

“And the geeks shall inherit the earth” goes the now well-worn appropria-
tion of bible lore referencing the inexorable rise of the tech-minded elite that
has come to dominate the business world of the 21st century. No more so is
this rise in fortune apparent than in the cut and thrust business of US sport.

Traditionally, when you think of professional sports team ownership in the
US, you think of fast-talking business tycoons with larger than life person-
alities and the bank balance to match. But just as businesses have begun to
dance to the tune of a new breed of technologically minded individuals, so

Chapter 7 leading Devops adoption in the enterprise 319

A DevOps transformation needs the line of business (LOB) to participate. IT
is striving to become better, after all, to deliver their business needs and goals,
which they are unable to do in the status quo. The line of business thus needs
to be a sponsor of the DevOps transformation, by providing the investment
and time, and by participating in the transformation by changing how they
engage and interact with IT. They need to become full-fledged stakeholders in
the effort. They need to ask questions to help the IT organization identify the
gap between their business needs and what they can deliver and then work
with IT to help them transform in order to fill the gaps they identified. Three
key questions to ask are:

 ■ Can the IT organization rapidly deliver new, innovative applications,
leveraging modern architectures?

 ■ Can they modernize existing applications to enable them to achieve
faster delivery and innovation?

 ■ Can they adapt culture, tools, and processes to succeed?

line of Business–it engagement
Let’s examine the topic of the engagement between the line of business and IT.
Typically this engagement is formal and minimal. The line of business identi-
fies some needs, helps to define them, and then disengages while IT builds the
solutions to deliver those requirements. It is not an interactive relationship
that goes back and forth to help further refine the requirements or to engage
with IT as they run experiments to identify the right problems that need to

too has sport found itself increasingly in the grip of a wealthy cartel of tech
industry leaders whose default is to disrupt.

In the NBA in particular, franchise owners like Steve Ballmer (LA Clippers),
Mark Cuban (Dallas Mavericks), and Vivek Ranadivé (Sacramento Kings)
have played a key role in shaking up their respective teams and the wid-
er league in a bid to make them technologically fit for purpose. Each has
brought a very different approach to their ownership, but all are in their
natural state when working and thinking digitally and have wasted no time
in leveraging technology to gain a competitive and commercial advantage.

—Robbins, 2015

DevOps Adoption Playbook320

be solved and the right solutions to address them. The LOB can play a critical
role. They can represent not just themselves but also the customer and the
broader market as IT works on the experiments.

The LOB also needs to be continuously improving their own needs and defini-
tion of the business value they want to deliver to the customer and to continu-
ously improve their own understanding of the business problems they are trying
to solve. They can do so by properly consuming the feedback coming from IT and
from the users using the applications in production, both during experimenta-
tion and post-release. They can receive and consume feedback on the following:

 ■ Application usage patterns. How are the customers using the app? Are their
usage patterns in line with the patterns the LOB expected and wanted?
Which parts of the application are the customers using and not using?

 ■ New use cases with customers. Are the customers using the app in ways
it was not designed for? Are the usage patterns leading to new use
cases the business had not identified? What else are users doing in
conjunction with the app? For example, if they are using another app
in parallel, should that external app’s feature be included in their app
(say, a mapping app the users keep switching to)?

 ■ User personas. Are the various user types matching the personas that
the LOB had identified? Are there new personas to be identified? Are
there personas that should be discarded?

 ■ User sentiment. What is the user sentiment as they use the application?
Are the users happy or frustrated? Are they complaining or becoming
fans who are promoting the app?

Using this and other kinds of feedback, the LOB can get into a mode of
continuous improvement themselves and work on improving their own under-
standing of their users and their needs.

In order for the LOB to be able to consume and act on the feedback at this
level, the feedback needs to be

 ■ Consumable
 ■ Actionable
 ■ Timely

This is a responsibility of the IT organization to ensure that the feedback
is usable by the LOB. Sending them server logs serves no purpose, and

Chapter 7 leading Devops adoption in the enterprise 321

neither does usage pattern or user sentiment data for the previous version
of the app.

engaging in the Devops transformation
Once a DevOps transformation has been launched and is in progress, in addi-
tion to engaging during the application delivery cycle and acting on feedback
provided, the LOBs can also engage by helping to actually drive the DevOps
adoption with their influence. They need to work with their stakeholders,
including the CIO, CTO, or senior application development executive, to do
the following:

 ■ Identify education opportunities for development teams in new tech-
nologies and platforms in order to quickly react to or innovate faster
than the competition

 ■ Prioritize areas for optimization of existing applications, increasing
innovation and freeing up resources for innovation

 ■ Sponsor DevOps value stream mapping workshops and participate in
them

Move shadow it out of the shadows
Lastly, the LOB needs to address shadow IT. LOBs create pockets of shadow
IT in the organization to help fulfill their IT needs that they believe their own
IT organizations cannot deliver. The better approach is to flip the shadow IT
model and invest in developing the skills and agility that shadow IT provides,
within their own IT.

If an external IT provider does need to be leveraged because there is a
specific need that internal IT cannot deliver in a timely manner, then the
engagement between the LOB and the external IT provider should be done
working with internal IT. This brings shadow IT out of the shadows, and it
can be leveraged within the domain of internal IT, utilizing some of its core
processes, without being stifled in their ability to innovate. A common example
would be a corporate IT utilizing a private PaaS like IBM Bluemix, which is
managed by IBM, but can exist with the organization’s IT-owned firewall, or
even in their own datacenter, leveraging the local deployment model presented
in Chapter 5.

DevOps Adoption Playbook322

The only way to validate an idea, and to fine-tune it once validated, is to
run experiments. The same is true for adopting specific DevOps capabili-
ties. As a DevOps adoption roadmap is developed, it will define a set of
capabilities that need to be adopted in order to address the areas of waste
identified (typically by running a value stream mapping exercise). You can

experiMentinG With fan enGaGeMent

Matt Higgins, the New York Jets’ executive vice president for business op-
erations, believes that the ability to browse has become so engaging that, in
a certain sense, watching a single live game from beginning to end cannot
compete. At the Jets’ new stadium in New Jersey, the team is experimenting
with ways to keep fans interested in games by plugging them into the data
stream while they are in their seats.

“There’s going to be a sense of cognitive dissonance if you don’t have access
to the comprehensive experience,” he said.

One experiment is a partnership with Pre Play Sports, a small technology
startup based in New York City. The company designed a game for mobile
phones that awards points to fans for predicting the outcome of each play as
they watch the game, with more points given for unlikely predictions.

In its initial form, Pre Play Sports allowed fans to predict the outcome only
of certain plays. But users quickly demanded the right to guess the length of
every kickoff and the result of every coach’s challenge, said Andrew Daines,
who founded the company last year shortly after graduating from Cornell.

“In order to keep our users engaged we had to offer them much, much
more,” he said. “We got to 99 percent, and that last 1 percent is what they
want most. They want to predict the coin toss.”

According to Mr. Daines, the average Pre Play Sports player spends 40 min-
utes with the app, a monumental period of time by smartphone standards.
He thinks the reason it is so easy to persuade people to play is that they
are earning a steady stream of positive feedback for doing what they were
already doing—putting a small emotional bet on every tiny development in
a three-hour football game.

—Brustein, 2011

play: starting with pilot projects

Chapter 7 leading Devops adoption in the enterprise 323

adopt these capabilities individually, or you can use the plays documented
in this book to adopt sets of capabilities together. The capabilities will
impact all areas of DevOps—process, tools, platform, and culture. You
should adopt these capabilities by running experiments and leveraging
pilot projects.

The ideal approach is to identify one pilot project for each capability being
adopted. The goal of each pilot project is to do the following:

 ■ Validate that the capability being adopted is delivering the results being
targeted.

 ■ Validate that the investment required to adopt the capability is in line
with what was budgeted and is delivering the return on investment
expected.

 ■ Validate that the approach and method taken to adopt the capability
is the right method.

 ■ Determine what improvements can be made to the capability, or the
method to adopt it, to make it better for projects that follow.

 ■ Determine the lessons that are learnt from adopting the capability.

These goals will result in an enhanced version of the capability and
the method to adopt it that can be leveraged by other projects across the
organization.

The main reason why you adopt only one capability per pilot project is to
isolate the experiment by capability. If a pilot project adopts more than one
capability in parallel, the questions I just listed will get answers that will be
difficult to parse between the multiple capabilities being adopted.

For the business goals and technical results that are expected from adopting
the capability, it is essential that the right metrics to measure be identified and
that the right improvement targets for these metrics be documented up front.
Furthermore, it is essential that a baseline of the metrics be taken before the
pilot project proceeds, to be used to measure improvement.

As the pilot projects proceed and metrics are measured, there are additional
questions to which the leadership of the DevOps transformation needs to find
answers:

 ■ Is the capability scalable? Can it be adopted by other projects in the
organization?

 ■ What enhancements need to be made to the capability and its adoption
method in order to make it reusable across the organization?

DevOps Adoption Playbook324

pilot project selection
In order to answer these questions, it is important to choose the right pilot
project. The pilot project selected should be a good exemplar of a typical project
in the organization. It cannot be an outlier in any way. The following is a list
of criteria to be considered when selecting the pilot projects:

 ■ Technology stack. Is the pilot project using a technology stack that has
widespread adoption across the organization, or does it have a unique
stack?

 ■ Platform deployed. Similarly, is the pilot project deploying to a platform
that is unique or an organizational standard?

 ■ Team location. Is the team co-located or geographically distributed?
What is the norm for the organization?

 ■ Team composition. Is the team running the pilot project made up of a
typical mix of employees and contractors? Is it a typical mix of veterans
and new hires?

 ■ Team experience. Is the team’s experience in working with the tools,
practices, platform, or each other typical for the organization? Or, has
the deck been stacked by putting a highly experienced team on the
pilot project to ensure its success?

 ■ Project timing/stage. Is the capability being adopted at the right time in
the project’s lifecycle? Is it two weeks to release, making adopting the
capability a low priority for the project team?

 ■ Project importance. Does the organization care about the project? Is its
success critical to the organization? If no one cares about the project,
it will not get the attention and resources it needs. In contrast, if it is
a mission-critical project, then it will get too much attention and too
many resources. Either end of the spectrum makes the project an outlier
and not representative of a typical project in the organization.

These are all examples of questions that should be asked when choosing the
right pilot projects. It is not uncommon to have to meet with and interview
project leads from dozens of projects in order to identify the right projects for
each capability being adopted.

Chapter 7 leading Devops adoption in the enterprise 325

executive sponsorship
In order to help with the success of these pilot projects, executive sponsorship
is essential. The executive sponsor will need to meet several goals:

 ■ Ensure the projects have the right resources and investment, as needed.
 ■ Provide cover for the projects to exempt them from any rigid processes

and governance oversight that could hamper their ability to adopt the
targeted capability.

 ■ Run interference to ensure that other executives, business owners, or
stakeholders do not pressure the project to abandon the capability or
put adoption on hold in order to meet certain project deadlines.

 ■ Allow a pilot project to be delayed, or even fail, without penalty, so that
the right lessons can be learnt from their experiences. Learning is the
primary goal of a pilot project.

play: rearing unicorns on
an aircraft Carrier

fosterinG MaveriCk athletes

A maverick athlete is one that falls outside the main group and best prac-
tice yet delivers winning performances. In athletic pursuits, these individu-
als understand the current boundaries and consciously or subconsciously
develop their own individual strategies/skills to attack those boundaries.
Maverick athletes are out there living life on the edge. They excite people
because they are different.

In alpine, you have the much celebrated and berated Bode Miller, in cycling
there was Graham Obree in the early ’90s, in F1 there was Mika Hakkinen,
in boxing there was Prince Nasem Hamed in the late ’90s, and obviously,
Muhammad Ali in the ’60/’70s. As mavericks in their sports they generated
wins without strictly adhering to current best practice techniques. They
were all also agents for change in their respective sports.

continued

DevOps Adoption Playbook326

Whether you call them mavericks or Unicorns, there are always people in
every organization who stand out. They are innovative. They truly think out-
side the box. They are inherent leaders. They can be very easily stifled by cor-
porate structures, policies, hierarchies, and governance. Instead of becoming
the most productive contributors and team leaders, they lose their mojo, or
leave and take their skills elsewhere.

“If a unicorn is walking east on an aircraft carrier, but the aircraft carrier
is headed west, where will the unicorn end up?” Well, either the unicorn will
end up in the water, or it will give up on going east and end up going west.

Think of the unicorn as the maverick and the aircraft carrier as the orga-
nization. The only way to foster such mavericks is to put them in a unicorn
farm and allow them to run free with other unicorns. Building teams that are
self-organizing, small (like squads), able to operate freely, and that have fun,
is what building unicorn farms is about. A culture of trust and collaboration
fosters such farms, where free communication trumps reporting hierarchies.

It is important to impress that winning is the key of maverick status. An ath-
lete can develop their own style (technical, skill, tactical, mental), but unless
this style allows them to win, dominate, and even decimate the competition,
then the athlete is not eligible for maverick status. However, winning is not
the only difference; the true maverick generates their performance over the
competition by doing things differently. Muhammad Ali defeated almost ev-
ery top heavyweight in his era; as a maverick in his sport, he was a masterful
self-promoter, and his psychological tactics before, during, and after fights
became legendary. It was his athleticism and boxing skill, however, that en-
abled him to scale the heights and sustain his position for so many years.

Several years ago during a Formula One race, an interviewer was talking to a
team boss about why they had chosen to contract a new young driver, “Mika
Hakkinen,” who was quick but erratic. The Team boss responded, “Mika is a
very fast driver; we can teach him to be more technical, but we cannot teach
him to be fast.” The point he was making was that “in his opinion” Mika’s
skill level/comfort zone for speed was not based on the established best
practice techniques for generating fast technical driving. Mika possessed an
individual method for FAST driving that the team wanted to exploit.

—Hewitt, 2015

continued

Chapter 7 leading Devops adoption in the enterprise 327

A culture where innovation and experimentation are not stifled, but rewarded,
is the key ingredient. Learning and discovery are encouraged even if the actual
experiment fails.

The executive team needs to lead the development and fostering of such
a culture, and also the maverick attitude. They need to set the example by
being mavericks themselves. They need to work the team hard, not to squeeze
every ounce of productivity out of them, but to help them develop a culture
and attitude of winning.

fostering ideas

Early on, all of our movies suck!

—Ed Catmull, Pixar president

Fostering unicorn is not enough. You also need to foster their ideas. The
idea may not be impressive, but most ideas aren’t in the beginning. They may,
however, be the seeds of something great. The executives in leadership posi-
tions need to allow such ideas to be experimented with. With the advent of
design thinking techniques that allow raw ideas to be refined and Lean startup
techniques that allow for experimentation with the idea of leveraging minimum
viable products, the risk and cost associated with validating and refining ideas
has become extremely low. The golden rule for fostering ideas is fail fast, fail
often, and fail cheap. Experimenting with hundreds of such ideas will identify
the few that need to be invested in, to launch the even smaller number that
will bring about significant business impact.

Introducing the practices of design thinking and Lean startup, and provid-
ing a resilient platform to rapidly develop the MVPs for experimentation by
establishing an innovation edge, is the responsibility of the executive leader-
ship. They do not need to come up with the ideas. They don’t even really need
to understand them. They do need to provide the environment for these ideas
to be experimented with and for the successful ideas to be developed with
proper investment. They need to develop a culture of innovation. They need
to let the unicorn take over the aircraft carrier.

To summarize, like a good sports team owner, general manager, and coach, the
organization’s executive leadership needs to make champions out of amateurs.

DevOps Adoption Playbook328

CoaChinG the 1980 olyMpiCs “MiraCle on iCe”

[Herb] Brooks was not a players’ coach.

He worked his players relentlessly, wearing on them, making them hate him.
It was simply his identity as a coach, and one that he would embrace at all
his coaching stops. It’s no surprise that Brooks was good friends with Bobby
Knight. Like Knight, Brooks was a military-style leader. Players had to do
things his way. All the time.

In one famous incident, he was unhappy with the way his team played dur-
ing an exhibition against the Norwegian national team. He warned his play-
ers that if they didn’t work during the game, they would work after it. Still
unhappy after the final period, Brooks marched the young men onto the ice
and forced them to skate suicides as the arena slowly emptied. Finally, as the
players were on the brink of collapse, he let them off the ice. His message
was clear. Work or go home.

In part, he would tell people later, he wanted the players from the East and
the players from the Midwest to hate him more than they hated each other.
There was a natural rivalry between the two groups. Fourteen of the players
were from either Minnesota or Wisconsin, and 9 of those had played at the
University of Minnesota. Four of the players were from in and around the
Boston area and had played at Boston University.

In 1976 a vicious fight had broken out between Minnesota and Boston Uni-
versity during the semifinals of the NCAA hockey championship. The fight
was so heated that it stopped the game for 30 minutes. Five of the players
on that 1980 squad had been on the ice that day, throwing punches at each
other.

Brooks had another reason for riding his players, for constantly pushing
them to the brink of throwing down their sticks and leaving the team for
good. The Soviet team was in awesome physical condition, one of the rea-
sons the Soviets seemed almost super-human to hockey fans. Brooks would
drive, exhort, and punish his young collegians until they could skate with
the Soviets for three periods. The Americans’ conditioning would be their
secret weapon.

Brooks the hard-driving disciplinarian had another side. After the Miracle,
he left the bench as soon as he could so that his players could have the spot-
light to themselves. TV cameras captured only the back of his brown sport
coat as he left the bench. “No words necessary, just pictures,” Al Michaels
intoned as the camera quickly cut back to shots of the players’ jubilation on
the ice.

Chapter 7 leading Devops adoption in the enterprise 329

Brooks would later call the year he spent coaching the 1980 Olympic team
his loneliest in hockey. He put on the mask of a ruthless tyrant because that
was what the team needed. As Mike Eruzione later said, “I firmly believe
that he loved our hockey team, but we didn’t know it.”

—Witnify, 2014

There is one more play that is needed here as it is the responsibility of the
executive leading the DevOps Transformation. That is: Building the Business
Case for a DevOps Transformation. However, I dedicated the entire Chapter
3 to that very topic. I refer you to that chapter on details on how to build a
business case for your organization, using the tools and techniques described
in that chapter.

summary
To summarize, this chapter focused on one theme alone: what does an execu-
tive need to do in order to lead a DevOps transformation across her organiza-
tion. The plays introduced here are the ones that form the playbook for the
executive—the coach or General Manager for the organization.

 ■ DevOps as a Transformation Exercise
 ■ Developing a Culture of Collaboration and Trust
 ■ DevOps Thinking for the Line of Business
 ■ Starting with Pilot Projects
 ■ Rearing Unicorns on an Aircraft Carrier
 ■ Building the Business Case for a DevOps Transformation (from

Chapter 3)

DevOps is a transformation exercise, not a project. It is not something one does
one time and moves on. It needs to transform the organization and that takes
time and continuous effort. All the automation tools and process improvements
in the world are not going to be able to deliver sustained value to the organiza-
tion, unless accompanied by a shift to a culture of collaboration, communica-
tion, and above all trust. The cultural inertia in your organization needs to be
overcome to achieve transformational change. This requires that the line(s) of
business too develop DevOps thinking and culture. They too need to transform.

DevOps Adoption Playbook330

One starts this DevOps transformation through pilot projects. These pilots
show the value of the DevOps processes, tooling, and organizational change.
Furthermore, they help the organization discover how to adapt these pro-
cesses, tooling, and organizational change based for their needs, maturity,
and ability to consume change.

The executives are also responsible for caring for and fostering the maver-
icks, the change agents in the organization. They are responsible for giving
these unicorns the freedom to thrive, to allow them to work on their ideas and
allow them to lead change.

Finally, to execute the transformation, and in fact even to get it initiated,
the executives will also need to build a business case for the DevOps transfor-
mation. This business case will need to show the value for the investments
and the change to the business. The business case will need to show what the
return of the investment and the change will be.

Appendix

Case Study:
example devOps

Adoption Roadmap

This appendix captures a DevOps adoption roadmap that was developed
for a large, multinational financial services organization. Certain details

have been modified to make the roadmap more generic and to remove any
company-specific references. All names have, of course, been removed, and
specific geographical details have been obfuscated to protect the innocent. This
particular roadmap was selected because of its broad application to DevOps
adoption situations, across a range of industries and organization sizes. Barring
the customer-specific situations that have been removed or generalized, this
client presented a set of business drivers, their current state of maturity, and
constraints—technical, organizational, and financial—that are very common.

The goal here is to present a very broad, relatable, exemplar roadmap that
can serve as a template for your organization. Your mileage will vary, because
there is not, and never will be, a one-size-fits-all adoption roadmap. Some very
important plays discussed in this book do not apply here. My recommendation
to you is to look at this as a case study of how to start from a business driver
and current state and select the right set of DevOps plays to develop a similar
roadmap for your organization to get to the end state you want.

Organization Background
The organization in question here, which I have given the fictional name of
Massive Bank and Finance Group (MBFG), is a large, multinational financial
services organization with traditional banking and financial services:

 ■ Retail banking (branch and digital)
 ■ Commercial banking
 ■ Private banking
 ■ Securities trading

The DevOps Adoption Playbook: A Guide to Adopting DevOpsin a
Multi-Speed IT Enterprise
By Sanjeev Sharma
Copyright © 2017 by John Wiley & Sons, Inc., Indianapolis, Indiana

DevOps Adoption Playbook332

Like most financial services organizations in the wake of the housing bubble
crash, MBFG has grown very quickly through acquisitions and mergers. They are
multinational, so they face a varied set of ever-changing regulatory requirements
from the different markets they operate in. They face an additional challenge
of needing to accelerate organic growth by innovating to reach both unbanked
millennials in developed markets and unbanked non-millennials in developing
markets. Above all, they are facing severe challenges from Financial Technology
(FinTech) startups that offer banking (or banking-like) services to these unbanked
customers, without being a bank and, thus, without carrying the regulatory con-
straints that come with having a banking license. They need to reduce the costs of
traditional branch-based banking and invest heavily in building a digital presence.
And yes, the regulatory environments that they have to comply with keep evolv-
ing, from changes in banking and fiduciary laws and regulations to Brexit-like
geopolitical events. These ever-accelerating changes and constraints are driving
the need for agility, speed, and innovation, while at the same time, MBFG has to
maintain quality and manage (lower) costs, just like any other organization in
the twenty-first century.

Roadmap Structure
As I describe in detail in Chapter 3, the process of creating a DevOps trans-
formation playbook, or an adoption roadmap, requires three core ingredients:

 ■ To have a clear definition of the target state (business goals and drivers)
 ■ To understand the current state (current capability and maturity)
 ■ To determine the best path to take, or plays to run (risk-value-investment

balance)

Let’s recap the process of creating a DevOps adoption roadmap:

 ■ The target state is determined by understanding and documenting the
organization’s business drivers and goals. What is the business asking
IT to deliver on that IT is unable to deliver without change?

 ■ The current state is determined by identifying the organization’s cur-
rent maturity and those factors that inhibit its ability to deliver what
the line(s) of business is asking of it. This current state is identified by
determining the bottlenecks or inefficiencies in the delivery pipeline, by
conducting a value stream mapping exercise.

Appendix Case Study: example devOps Adoption Roadmap 333

 ■ The roadmap is then developed by identifying the right plays; these
are the set of DevOps capabilities that need to be adopted in order to
address each identified bottleneck. When selecting the plays, you need
to take technical, organizational, and financial factors into consider-
ation. I discuss these factors in detail in Chapter 3.

The adoption roadmap that I present in the next section captures all these
areas described earlier.

devOps Optimization and innovation Workshop
The following roadmap was created as the output of a DevOps Optimization
and Innovation Workshop conducted at MBFG. This is a formal half-day work-
shop run by IBM to help an organization develop a DevOps adoption roadmap
and to initiate their DevOps transformation journey. The adoption roadmap
is structured in the following five sections:

 1. Business drivers
 2. Technical initiatives already in play or planned
 3. Value stream mapping results
 4. Root causes
 5. DevOps capabilities (plays)

Each of these sections was created as the output of the five exercises that
make up the DevOps Innovation and Optimization Workshop, addressing
each of these five areas.

For MBFG, IBM delivered this workshop for their digital banking division,
which is a separate line of business that serves their retail banking and com-
mercial banking lines of business, and delivers their web and mobile presence.
This division was also leading the charge in transforming the global bank
by introducing new technologies, expanding their global footprint through
developing innovative applications and business models, and also acquiring
FinTechs. They were thus an ideal candidate for DevOps adoption—both on
the innovation edge1 side where they primarily operate, and in terms of the
services from the optimized core of which they are consumers. Because of these
factors, they need to be optimized and agile.

1 If you skipped ahead, innovation edge and optimized core were introduced in Chapter 3.

DevOps Adoption Playbook334

The workshop was sponsored by the division chief technology officer (CTO).
The following technical executives also attended:

 ■ Division chief architect
 ■ Director of application development (including QA)
 ■ Director of enterprise architecture
 ■ Director of digital operations
 ■ Director of service delivery
 ■ Chief operating officer

IBM provided a DevOps subject matter expert (SME) facilitator and an IT
specialist with past engagement experience with MBFG to run the workshop.
In all, the workshop took around six hours to run, including a one-hour pre-
workshop preparatory phone call. The report was prepared in conjunction
with MBFG over a two-week period, and then presented to the CTO and
the other attendees. It was then handed over to MBFG as a roadmap they
now own.

The roadmap is currently being executed. There are regular meetings
between MBFG leadership and IBM to review the transformation effort and
update the roadmap as needed.

Background and Context
To better appreciate the roadmap, it is important to understand the background
information regarding MBFG—and specifically the digital banking division—
that the IBM team delivering the workshop knew prior to the workshop. This
information created a context for the workshop that would not need to be then
discussed during the workshop itself, saving time.

Business Context
This section provides the business and market context in which the DevOps
adoption is being considered by MBFG. What were the goals and constraints
of the line(s) of business?

 ■ Markets—MBFG in general, and the digital banking division specifi-
cally, was targeting two main growth markets:

 ■ Millennials who needed banking services but were not using
traditional banks. Here, the main competition included new
FinTechs like Venmo and Square.

Appendix Case Study: example devOps Adoption Roadmap 335

 ■ An unbanked growing middle class, specifically in the growth mar-
kets in the developing world. MBFG had acquired several banks
around the world in developing nations that had a rapidly grow-
ing middle class. Here, the main competition included FinTechs
like Novopay (Standard, 2014) in India that were offering bank-
ing transactions through corner stores.

 ■ Partner ecosystem—MBFG was looking at additional revenue streams
by developing a partner ecosystem. They therefore needed to create an
application programming interface (API) economy to enable this.

 ■ Regulatory concerns—The regulatory environments that MBFG oper-
ates in vary by market. Complying with all of these requirements, and
especially new regulations like the Payment Services Directive (PSD2)
in Europe, was severely draining IT resources.

 ■ Security concerns—“I never want my name in The Wall Street Journal,”
was how the MBFG chief information security officer (CISO) described
their security goals. Recent breaches in large financial institutions had
resulted in more investment in security, which reduced investment
elsewhere.

 ■ Outages—One of the banks in the MBFG group had had a major out-
age. MBFG was unable to re-create the outage to determine the root
cause. A clear lack of an up-to-date enterprise architecture was the
cause of being unable to re-create the outage. Regulators were looking
at this inability to even understand how and why the outage occurred
very closely because clients were unable to access their accounts for
the duration of the outage. MBFG wanted to ensure that any changes
were well architected, and all architectural changes well documented,
so that a current enterprise architecture could be maintained.

IT Context
This section provides the IT departments context in which the DevOps adop-
tion is being considered by MBFG. What were the goals and constraints of the
IT department?

 ■ Hybrid systems—MBFG had grown through acquisitions and mergers
and had also been around for several decades. They therefore had a
large legacy technology stack, from mainframes, to IBM System i, to
Unisys systems, to multiple obsolete versions of middleware that were
running older systems, which needed to be upgraded.

DevOps Adoption Playbook336

 ■ Shadow IT—Shadow IT was rampant, especially outside the digital
banking division. Several lines of business had created business appli-
cations they were running on public cloud providers like Amazon Web
Services (AWS), Rackspace, and SoftLayer. They had hired boutique
firms to build these applications.

 ■ Data residency—Data residency was a big issue. Several countries
around the world required that their clients’ data be stored locally.
Because of the acquisitions and mergers, MBFG now had country-
specific versions of some applications and systems running in local data
centers, managed by them or by external vendors.

 ■ No cloud strategy—Other than the MBFG CIO making statements to
the board and the press like, “We are cloud first,” in reality, there was
no enterprise-wide cloud strategy. Shadow IT usage of multiple cloud
vendors was rampant. Experiments were being done by several groups
with OpenStack, Docker, and Cloud Foundry. The CIO was still unde-
cided about an official stance on using a public cloud.

Adoption Roadmap
The rest of this chapter documents the adoption roadmap developed for MBFG
in its entirety. Of course, several direct references and specific details have
been obfuscated and fictionalized to generalize the roadmap.

Business drivers
The following business drivers for the digital banking division of MBFG were
identified in the workshop:

 ■ To manage costs in order to do more.
 ■ The goal here is not reducing cost but improving productivity to

be able to deliver more within the existing budgetary structures.
 ■ To increase pace and throughput of development of new applications

and of enhancements to existing applications.
 ■ The goal is to both innovate faster and improve existing systems

at a faster pace.
 ■ To adopt a more product- and customer-centric delivery approach.

 ■ The goal is to be able to capture customer feedback and develop
and enhance applications based on that feedback.

Appendix Case Study: example devOps Adoption Roadmap 337

 ■ To increase quality—both of products and software.
 ■ The goal is to reduce downtime and outages experienced by

clients.
 ■ To accommodate regulatory pressures to reduce or eliminate change

windows.
 ■ MBFG, like many FSS organizations, is under regulatory scru-

tiny in multiple markets to reduce downtime during scheduled
change windows, during which clients may be unable to access
some account features.

existing iT initiatives
MBFG was actively addressing the challenges it faced, even before this work-
shop. Multiple initiatives are in flight or planned. These initiatives are listed
here and have been incorporated into the final adoption roadmap.

 ■ Automation of environment provisioning
 ■ This initiative refers specifically to full-stack environments that

might be deployed. MBFG is currently exploring cloud environ-
ment provisioning and orchestration tools.

 ■ Release automation
 ■ This refers to the automation of application software deploy-

ment into production (and by extension dev/test) infrastructures.
MBFG has been adopting the IBM UrbanCode tool suite to assist
in this challenge.

 ■ Adoption of continuous integration (CI) tooling
 ■ Several CI tools are in various stages of adoption, across MBFG.

The goal is to standardize on a minimal set of tools (one or
more) that can create a set of standards and enable any team at
MBFG to adopt CI.

 ■ Adoption of service virtualization
 ■ MBFG has adopted a service virtualization tool and is rapidly

expanding its use across the digital banking division.
 ■ QA transformation

 ■ Work is being assessed to automate testing and to undertake
integration testing earlier in the life cycle (shift-left2).

2 Shift-left, a Lean principle, was introduced in Chapter 1.

DevOps Adoption Playbook338

 ■ Simplification of application architecture
 ■ A specific challenge in the digital banking division is the com-

plexity of the existing code-base. They are presently looking
at how this might be simplified, by introducing more modu-
larization into the design. This is separate from the enterprise
architecture effort.

 ■ Architectural de-layering
 ■ A further challenge specific to the digital banking division is the

apparent over-layering of the architecture, where duplicate and
redundant layers can be consolidated. They are presently examin-
ing how this can be achieved, along with the associated benefits.

 ■ Pilot of design thinking
 ■ The digital banking division has been attending a series of work-

shops to understand how they can leverage design thinking to
reduce the highly bureaucratic process of requirements elicita-
tion and documentation. They have identified significant chal-
lenges with the existing processes, which require approval from
approximately 34 different committees. Initial targets have iden-
tified a goal of two weeks to minimum viable product (MVP).

 ■ Extraction of metrics from DevOps tooling
 ■ Current work extracts metrics for reporting purposes from mul-

tiple sources, both commercial and homegrown. Most of the
reports provided to management take multiple days to generate,
making the data stale in most cases. The MBFG digital banking
division is looking at adopting Hygieia, an open-source DevOps
dashboard developed by Capital One, a U.S. bank.

Bottlenecks
The value stream mapping exercise conducted during the workshop identi-
fied the following bottlenecks in the delivery pipeline of the digital banking
division at MBFG. The workshop attendees had picked one exemplar pipeline
for Java development for the purposes of the value stream mapping exercise.

 ■ Requirements management and design:
 ■ The define phase is excessively costly. Typically, the costs

incurred in the define phase are large enough that projects
become committed, with very little flexibility.

Appendix Case Study: example devOps Adoption Roadmap 339

 ■ The output of the requirements elicitation and design process
comprises paper artifacts, rather than artifacts and models that
can be iteratively worked on. Documents are long (typically 100+
pages) and often aren’t read or fully adhered to by the teams that
are intended to consume them.

 ■ The high-level design branches out into different platforms, and
as this happens, each team produces a different design that is
independent of the higher-level design. This results in no trace-
ability from higher-level to lower-level designs.

 ■ Project governance and management:
 ■ Project management is too often seen as adopting an observe-

and-report mentality, rather than actively driving a project.
 ■ Project funding can sometimes be inconsistent and intermittent,

leading to a start-stop approach that directly impacts consis-
tency. For example, funding may dry up, leading to personnel
being released; then, when funding is secured, different people
are assigned to the project.

 ■ It can take a long time for technology decisions to be made
through governance.

 ■ There are processes that tell people what to do, but not how to do it.
 ■ Project teams:

 ■ The overall philosophy of the organization is to bring work to
teams, rather than teams to work. This results in domain knowl-
edge being lost as people on a project team may never have
worked in that domain area before, but are assigned because
they are available.

 ■ Cross-functional teams use a ticket-based system to communicate,
which is too slow and cumbersome, resulting in long wait times.

 ■ Code and architecture:
 ■ Code management is currently very inefficient. At T-30 days

for a deployment, code from multiple projects is merged into a
business release code stream.

 ■ Code lacks any modularization or internal architecture. This
lack of application architecture results in a lot of inefficiency
and technical debt.

 ■ Application server configuration management:
 ■ Application server configurations are managed through one

large file that contains a very large number of configuration

DevOps Adoption Playbook340

parameters for multiple applications; this creates configuration
management constraints and makes the configuration manage-
ment very error prone.

 ■ To save costs, early-stage testing uses the Jetty app server, despite
WebSphere Application Server (WAS) being the production
deployment target. This requires every project to dedicate one
sprint (iteration) per release cycle to ensure the app runs on
WAS before deployment to production.

 ■ Deployment and release management:
 ■ Deployment is manual, very costly, and time-consuming.

Approximately 35 to 40 full-time employees are required to do
deployments into dev/test/prod environments.

 ■ The batch size for a business release is very large; there can be
up to 20 projects in a single release, so all these projects need
to be coordinated and timed as a single release.

 ■ There is interlock between multiple projects in a business release
at the design phase, and then again at system test, but nothing
in between; this results in several integration challenges being
identified too late.

Root Causes
The following root causes were identified for the bottlenecks listed in the
previous section. These root causes were found by examining each bottleneck
individually. The following is a consolidated list that was developed after
examining dependencies and duplication.

 ■ Lack of a single application architecture that evolves, rather than a lot
of separate designs. Such a model can evolve over the life cycle.

 ■ Having a single, one-size-fits-all governance process creates a desire
for projects to bypass the existing governance processes because they
are too cumbersome.

 ■ Lack of a product-based single team that has overall ownership of a
product through its life cycle. Current ownership shifts from proj-
ect team to project team, resulting in a lack of end-to-end technical
ownership throughout the life cycle and across components of the
application.

 ■ Lack of automation, especially release and deployment automation.

Appendix Case Study: example devOps Adoption Roadmap 341

 ■ Lack of good application architecture and configuration management
practices, especially the need for a microservices-based architecture
and loose coupling between services and components.

 ■ Integration testing is done too late in the delivery life cycle.
 ■ A move from a process-focused to a product-focused approach.

devOps practices
The following DevOps capabilities were recommended to the MBFG digital
banking division to address the bottlenecks in their delivery pipeline and
enable them to embark on their DevOps transformation journey.

 1. Automation

Goal
Introduce automation tools for the following four areas:

 ■ Deploy
 ■ Environment-build and maintenance
 ■ Test
 ■ Release

Automation provides the capability to make processes repeatable,
reliable, and scalable.

Business and technical benefits
During the workshop, several areas of inefficiency were identified that

can be addressed by introducing automation. These inefficiencies result
in significant business impact by causing waste and increased wait-times:

 ■ An inefficient ticketing system is used by cross-functional teams
to communicate.

 ■ Manual testing takes multiple days to complete.
 ■ Regression testing is automated but still requires multiple days

and is conducted too late in the delivery life cycle.
 ■ Deployments for full releases are manual and done in batches

with significant wait times, which create overhead costs.
 ■ Dev-test-prod environments do not use the same middleware

and configurations.
The following recommendations were listed as the first to be adopted

because they have the most significant return on investment that can
be achieved quickly.

DevOps Adoption Playbook342

DevOps adoption recommendations
IBM recommended that the MBFG digital banking division adopt

automation tools for each of the following four areas to address the inef-
ficiencies that are causing waste and will eventually impact business.

 i. Implement a single collaboration tool that allows all stakeholders
across the delivery life cycle to plan, collaborate, and share work
items. This will address all collaboration issues by replacing the
ticketing systems that are presently used.

 ii. Adopt deployment automation that allows for the automated
and reliable deployment of application components, as well as
middleware code and configurations, to any environment in the
delivery pipeline.

 iii. Continue the adoption and rollout of test virtualization to pro-
vide the capability to carry out continuous testing of application
components. Continuous testing at all stages of the delivery life
cycle allows for the shifting left of testing, which results in early
identification of defects and architectural flaws, and increases
overall quality.

 iv. Adopt a release management tool to provide capabilities to
coordinate releases, resource availability, and environment
availability. This ensures proper queuing of releases and their
components as they flow through the delivery pipelines and
integrate across their respective streams.

It is essential that the right processes be automated, and that
they be optimized to achieve maximum efficiency. It is thus
recommended by IBM that the MBFG digital banking divi-
sion work with subject matter experts (SMEs) to examine their
existing processes in all four identified areas of automation and
embark on a process improvement initiative across these areas.
Introducing automation tools also provides the ability to explore
alternate efficient processes that are not feasible when carried
out manually.

 2. Reduction of deliverable batch size

Goal
Make the delivery pipelines as efficient as possible, in order to reduce

the cycle time for each iteration, or sprint. Reducing the batch size of
each deliverable helps to achieve this objective.

Appendix Case Study: example devOps Adoption Roadmap 343

Business and technical benefits
Delivering smaller batches of application functionality changes

allows for rapid iterations with enhanced throughput, reduced risk,
and improved quality. Enabling the delivery pipeline with automation
tools and architecting iterations through the delivery pipeline to be
made up of a small number of changes to functionality results in more
frequent deployments across the delivery pipeline, more frequent test-
ing of smaller changes to code and configurations, and more frequent
integrations for the components. This enables DevOps capabilities like
continuous integration, continuous delivery, and continuous testing.
Smaller batch sizes also reduce challenges with release planning by
reducing competition for available resources in the delivery pipeline
and decreasing the length of release cycles that block resources for
extended periods of time.

DevOps adoption recommendations
 i. Embark on an initiative to reduce their delivery batch sizes. This

is not a trivial task because it requires the refactoring of their
application and data architecture to ensure that their applica-
tions are made up of smaller, loosely coupled components that
can be deployed and tested independently. At an application
level, adopting a microservices-based architecture would be an
ideal approach to address this recommendation.

 ii. Use test virtualization allows for more frequent testing of these
smaller components, without waiting for other related compo-
nents to be available. In addition, deployment automation auto-
mates frequent and continuous deployments of individual and
composite components and applications at higher frequencies.

The MBFG digital banking division would need to get
architectural guidance to help them re-architect and refactor
their applications to adapt them into a microservices-based
architecture.

 3. Establishment of offering management teams

Goal
Establish permanent offering management teams that have ongoing

ownership of the application products across the MBFG digital bank-
ing division.

DevOps Adoption Playbook344

Business and technical benefits
Having offering management teams in place that have both program-

matic and technical ownership of the application products being delivered
provides enhanced resilience in application delivery capabilities, while
adhering to the core governance requirements of the MBFG digital bank-
ing division. These teams are permanent and retain ownership of products
beyond individual projects and across enterprise-wide initiatives. They
assemble the requisite teams of subject matter experts and technical prac-
titioners to deliver on individual projects and overall capabilities of the
products. They become the teams the work comes to, rather than teams
that are transient and are assembled to address a unit of work.

DevOps adoption recommendations
 i. Identify a minimal set of products that should have their own

permanent offering management teams. These teams should have
ownership of the architecture, technical design, and long-term
vision for the product, and work in conjunction with the lines of
business to own the requirements being asked for by the business.

 ii. Develop a governance process and standards to manage the iden-
tified offering management teams.

 iii. Provide the offering management teams the appropriate skilled
resources to ensure their long-term viability and success, including
product owners, solution architects, and requisite management.

 iv. Enable the offering management teams training on design think-
ing techniques to leverage for designing application roadmaps,
requirements, and capabilities, based on the desired user experi-
ences of a well-defined set of personas.

 v. Ensure the creation of a continuous funding model to ensure con-
tinuity for these product teams.

These recommendations are organization-, process-, and gov-
ernance change-related, and need to be initiated and owned
by the MBFG digital banking division senior leadership. IBM
shared experiences of their own offering management teams
with MBFG, explaining how they are organized and how they
operate within the IBM application delivery organization.

 4. Application architecture design

Goal
Introduce the capability of application architecture modeling at the

MBFG digital banking division to capture the design and architecture

Appendix Case Study: example devOps Adoption Roadmap 345

of applications and systems as they evolve through the application
delivery life cycle.

Business and technical benefits
Having a common set of models that represent the code and the

architectures across all the applications and systems is essential to
provide a single view, rather than the multiple design artifacts that are
used today. Keeping a common set of models also allows for the ability
to reuse, as well as for refactoring and better architecture.

DevOps adoption recommendations
 i. Start an initiative to capture all the code across multiple com-

ponents, applications, and systems as well-documented applica-
tion architectures. The solution architects in each delivery team
should take ownership of these architectures as they are created
and also take ownership of maintaining them as the application
and its dependencies on other applications and services evolve.
These solution architects should also be responsible for identi-
fying reuse and refactoring opportunities for the architectures
and updating the enterprise architecture.

IBM can provide tool and architectural guidance to the MBFG
digital banking division for model and architecture management
best practices and enablement for tool usage.

 5. Self-service dev-test environment provisioning

Goal
Introduce self-service portals for Dev and Test practitioners to enable

them to provision appropriate production-like environments, configure
them, and deploy the application being developed or tested to the pro-
visioned environment, with the push of a button.

Business and technical benefits
One of the biggest inhibitors to the efficiency and productivity

of the development and test practitioners is the lack of access to the
production-like environments they need. Providing a self-service portal to
the practitioners that has preconfigured full stack patterns that can be
automatically provisioned and made available, without manual inter-
vention required by the operations team, can significantly improve
practitioner productivity. Ensuring that these environments are produc-
tion like, so that they resemble the production environments in their

DevOps Adoption Playbook346

topology, configurations, and behavior, can significantly improve the
quality of the product being developed and tested.

DevOps adoption recommendations
 i. Start an initiative to create a cloud-based self-service portal.

This portal, the patterns available, and the cloud environments
on which the dev-test environments are provisioned would be
managed by the operations team. The dev-test team would put
in a request for new environment patterns, as and when needed.

 ii. Utilize an OpenStack-based cloud, using a cloud management
tool that would oversee pattern design, pattern portal, and cata-
log management, environment provisioning using OpenStack
Heat, and orchestration of provisioned environments.

Roadmap Adoption
The adoption roadmap presented in this appendix can appear extremely daunt-
ing and a tremendous amount of work for any single organization to under-
take. It is important to note that such a roadmap is developed as a guide to
undertake a massive organization-wide transformation. An organization like
MBFG would not be expected to undertake such a transformation as a “big-
bang” approach, but do so through a series of pilot projects to adopt individual
recommendations in small, managed projects, as described in earlier chapters.
Only upon the successful completion of these pilots and harvesting of lessons
learned would one scale broader across the organization. These pilots will
need to be staggered to spread out the investment of time, money, and SME
resources needed, and allow for the right projects to be in the right phase
to allow for introducing significant change to how they develop and deliver
applications. This is hence a multi-year transformation roadmap.

Furthermore, in working with MBFG management, prioritization of the
recommendations in the roadmap was undertaken to allow them to decide
which ones to address first. The investments required, and the expected return
on investment for each, was a major consideration for the prioritization effort,
as was the time to value needs for certain capabilities, defined by the lines of
business goals and market timing needs.

This roadmap should hence be taken as a large-scale DevOps adoption
roadmap for an organization-wide transformation. Your roadmaps will vary
based on your needs and goals and will hopefully be less complex.

develop roadmap, 280–281
diagnose root cause, 58–59
example of. see DevOps adoption roadmap

example
help teams follow DevOps, 269
identify target state, 42–45
leadership for. see leadership, DevOps

adoption in enterprise
organized adoption, 265–266
overview of, 39–41
playbook development, 41–42
summary review, 65
transformation plays for, 60–65
value stream map, identify inefficiency,

46–49
value stream map, using, 49–51
value stream mapping workshop, 56–58

agent pools, 133–135
Agile

adoption of, 113–117
continuous integration in, 11–12
Dev vs. Ops and, 7–8
minimize inventory/backlog in, 99
mobile app teams and, 172
roots of DevOp in, 4–5, 114
trust between Ops and Dev in, 151
waterfall paradigm before, 7

Agile Manifesto, 4, 13–16
The Agile Manifesto (Cockburn and Fowler),

4–5
agreements

contracts as, 56
manufacturing supply chain, 53
service level. see service level agreements

(SLAs)
Allspaw, John, 2
Amazon Web Services (AWS)

ECS, 241
paying people to leave if unhappy, 113
public cloud, 223
Shadow IT on, 336

Amazon Web Services (AWS) CloudFormation,
22, 134, 231–232

American football
Antifragile bodies in, 209
college and university platforms for, 216

Numbers
4+1 View Model of Software Architecture

(Krutchen), 32
12-Factor App (microservices)

as architectural model for team, 103
concepts and best practices, 245–247
develop/deliver new cloud-native apps via,

248, 250
evolution of, 32

20-over format (Twenty20 or T20), cricket, 190

A
A/B testing

implement fail fast in, 207–208
on innovation edge applications, 92
monitor application user behavior, 157

abstraction
in cloud-hosted platform. see cloud-hosted

DevOps platform
environment, 219–221, 249
IaaS adding layer of, 227–232
OpenStack Heat as layer of, 232–233
Ops role in changing to higher level of,

151–152
platforms introducing, 140–141

acquirers
manufacturing supply chain, 52–53
software supply chain, 53–56

acquisitions
acquisition cycle time, 97
contracts in software component, 56
DevOps adoption roadmap example, 332,

335–336
reasons to adopt DevOps, 311–312

activities
build business case via key, 82–83
value stream mapping, 49–51

Adjust cycle, (PDCA), 4
admin processes, 12-Factor App, 246
adoption, Agile, 113–117
adoption, DevOps

assess current state, 45–46
business case. see business case, developing
delivery pipeline vs. factory assembly line,

51–56

Index

The DevOps Adoption Playbook: A Guide to Adopting DevOpsin a
Multi-Speed IT Enterprise
By Sanjeev Sharma
Copyright © 2017 by John Wiley & Sons, Inc., Indianapolis, Indiana

Index348

application lifecycle, outsourcing, 302
application performance

continuous monitoring of metrics for, 26
management by IT, 154

application service providers, 85
application user behavior, monitoring, 26, 157
applications

continuous improvement of, 33
continuous integration across, 126
monitoring, 156
monitoring mobile, 170
as What? of deployment, 132–133

architectural dependencies, Multi-Speed IT,
199

architecture
big data and analytics reference, 180–181
Conway’s law for teams and, 102–103
DevOps adoption recommendations,

344–345
DevOps adoption roadmap example, 338–339
DevOps for mainframe concerns, 173
reducing batch size to reduce complexity of,

99–101
risk mitigation and, 31–33
standardize for multi-speed delivery,

199–200
team models for DevOps, 285
vertical integrations across multiple delivery

pipeline, 123
artifact (package) repository, 137–138
artifacts

in culture of continuous improvement,
282–284

integrated delivery pipeline for, 117–123
measure cultural PKIs, 112
overcome cultural inertia relative to,

64–65
in team models for DevOps, 284
value stream mapping via, 49–51
VSM workshop using, 57–58
waste or inefficiency in, 47–49
as What? of deployment, 132

assembly line, mitigating process errors/
mistakes, 298

ASUM (Analytics Solution Unified Method),
IBM, 181–183

auditing
end-to-end traceability for audit

trails, 121
mitigating insider attacks, 296
for source code loss or compromise, 297

automation
cloud orchestration for cloud, 229–232
in continuous integration, 13–14, 175

general manager and, 307
improvement of plays in, 278–279
optimization core/innovation edge in, 91, 93

American schools, as platform for Olympians,
216–217

analysis
building business case, 69
of test data results, 148–149

analytics solutions, DevOps for big data,
180–185

Analytics Solutions Unified Method (ASUM),
IBM, 181–183

analyze phase, ASUM, 182–183
Ansible, versioning environments, 22
Antifragile (Taleb), 210
Antifragile athletes, 208–210
Antifragile systems

application delivery and, 218–219
characteristics of, 212–215
delivering, 208–211
design microservices as, 245
mitigate development process errors/

mistakes, 298
anti-patterns, DevOps transformation, 312–313
APIs

deployment automation and, 255
DevOps platform and, 255–256
innovating with, 253–254
mobile app delivery, 171
for multiple, multi-speed delivery pipelines,

200
security concerns, 299–301
vertical integrations across multiple delivery

pipeline, 123
Apollo 13 incident, 298–299
app store

impact of negative ratings on, 168
mobile app delivery using virtual, 171–172
mobile-specific DevOps challenges, 167

application delivery
architecture and, 32–33
automating quality checks, 298
business case for, 68–69, 78, 83–85
business view of, 10
continuous delivery in, 16–17, 140–141
DevOps transforming, 292
enabling experimentation, 208
handoff errors in, 299
multi-speed, 59
optimization of, 88–89, 111, 114–115, 124
outsourcing, 301–304
platforms/environments for, 41
release management in multiple pipelines, 162
stakeholders, 74

Index 349

Bluemix PaaS, IBM
changing role of Ops team and, 153
with Cloud Foundry, 234, 237–238
DevOps services on, 236
moving shadow IT out of shadow, 321
open toolchain, 289–290

blueprint, adoption roadmap as, 280
Booch, Grady, 31–32
bottlenecks, delivery pipeline

caused by individuals, 105
dashboard continuously exposing, 159
DevOps adoption roadmap example, 338–341
identify for optimization, 106
identify with VSM, 57–58, 116, 282–284
integrated delivery pipeline eliminating,

117–123
root cause of, 58–59, 340–341

BPEL (Business Process Execution Language),
229

BPMN (Business Process Modeling Notation),
229

Brailsford, Sir Dave, 98
branching schemes, enabling CI, 125
Brand, Peter, 87
Brooks, Herb, 328–329
Bryant, Kobe, 301
build

Anti-Fragile Athlete, 208–210
automating, 13–14, 175–176
fast, 14, 175–176
get latest executable, 15
governance of, 127
mainframe, 175–176
mainline, 14
principle of daily, 124–125
right product, 202–206
visibility of current status, 15

build-release-run, 12-Factor App, 246
business

continuous planning for, 27
define target state, 42–45, 106
develop microservices around, 244
DevOps adoption roadmap example, 334–337
drivers for DevOps adoption, 10, 34–35,

336–337
innovation and role of technology, 192–193
innovative applications, 190–192
mobile-specific DevOps challenges, 166–167
optimization vs. innovation and, 89–94
security risks. see security for DevOps
visibility of current status, 15

business case, developing
Business Model Canvas, 71–72
channels, 80

deployment. see deployment automation
DevOps adoption roadmap example, 337,

341–342
of integrated delivery pipeline, 117–118
of IT service management, 155
of microservices, 245
mitigate insider attacks, 296–297
overcome cultural inertia via, 106
in release management process, 163
secure product delivery and, 292
as security risk for supply chain, 296
test data generation via, 148
tools for DevOps adoption, 41
transformation plays for, 60–61
trust between Ops and Dev via, 151

AWS. see Amazon Web Services (AWS);
Amazon Web Services (AWS)
CloudFormation

B
B2B (business-to-business) apps, 73
B2C (business-to-consumer) mobile apps,

166–167
B2E (business-to-employee) mobile apps,

166–167
back-end systems, innovative apps, 191–192
backing services, 12-Factor App, 246
backlog management, 99
Ballmer, Steve, 319
basketball

multi-sport athletes, 198–199
NBA and outsourcing, 301
team owners transforming NBA, 318–319
understand playing field, 42

batch size, reduce
in A/B testing, 208
benefits of shift left, 142
build right product in Lean startup, 204–205
for continuous delivery, 32
as core theme, 98–102
DevOps adoption recommendations,

341–343
minimize security risks via, 292, 294

Beane, Billy, 87–88
big data, DevOps for, 180–185
bimodal applications, 90
Bimodal IT, 121
black box security tests, insider attacks, 294
The Black Swan (Taleb), 210
blue-green deployments, 212, 218–219
Bluemix

Containers, 241
Garage Method, 219

Index350

change management
cycle time, 97
end-to-end traceability for, 120
by environment providers, 220–221
mitigatation of insider attacks, 297
trust between Ops and Dev, 151

channels, build business case, 80
Chaos Monkey tool, 213–214
chapters, team models for DevOps, 286–287
check balance capability, of microservices, 244
Chef, version environments via, 22
chemistry, team, 102
CLM (Collaborative Lifecycle Management),

IBM, 27–28
clone environment

in continuous delivery, 17
in continuous testing, 147
testing in, 14–15

The Cloud, 22
cloud brokerage, IaaS cloud, 228–229
cloud computing, DevOps adoption roadmap,

336
cloud consumption models

dedicated cloud, 224
local cloud, 224–225
overview of, 221–223
private vs. public, 223–224
self-managed vs. vendor-managed, 225–226

Cloud Foundry
for blue-green deployments, 219
PaaS with, 234, 237–238
standardizing cloud platforms, 290

cloud orchestration, IaaS cloud, 229–232
Cloud Orchestrator, IBM, 230
cloud patterns, 134, 231
cloud-based self-service portal, DevOps

adoption, 346
CloudFormation. see Amazon Web Services

(AWS) CloudFormation
cloud-hosted DevOps platform

cloud consumption models, 221–223
dedicated clouds, 224
local clouds, 224–225
overview of, 221
private vs. public, 223–224
self-managed vs. vendor-managed, 225–226

cloud-hosted environments, 134, 152
cloudMatrix, IBM, 228
cloud-native apps, 245–250
coach, 1980 Olympics, 328–329
coach, DevOps

Center of Competency, 269–270
driving DevOps adoption, 62

cost structures, 85
customer relationships, 80–81
customer segments, 72–75
example of, 67–68
key activities, 82–83
key partnerships, 84–85
key resources, 82
revenue streams, 81–82
summary review, 85–86
techniques for, 68–71
value propositions, 75–79

Business Model Canvas. see business case,
developing

Business Model Generation (Osterwalder &
Pigneur), 70–71, 194–195

business models, 194–198
business owner, value propositions, 79
Business Process Execution Language (BPEL),

229
Business Process Framework (eTOM), 153
Business Process Modeling Notation (BPMN), 229
business service management, 154
Business Value Assessment (BVA), 69
business-to-business (B2B) apps, 73
business-to-consumer (B2C) mobile apps,

166–167
business-to-employee (B2E) mobile apps,

166–167

C
CA Service Virtualization (ITKO LISA),

145–146, 184
CaaS. see Container as a Service (CaaS)
cadence (rhythm), 124, 125–127
capabilities, 323, 341–346
capital expenditures (CapEx), 85
Capital One, Hygieia DevOps dashboard,

158–159
case study. see DevOps adoption roadmap

example
CD. see continuous delivery (CD)
Center of Competency (CoC), 267, 268–272
Centers of Excellence, DevOps, 104
certificates, mobile app governance, 171
change

break down organizational silos, 266
classifying applications by, 90
cultural inertia to, 64–65
leadership of executives in, 308
manufacturing vs. software supply chain, 54
mitigating errors in project, 294–295
pressure to adopt transformative, 309–311
productivity dip as result of, 61–63

Index 351

in manufacturing supply chain, 52–53
release management for multiple, 162–163
as security risk for supply chain, 296
in software supply chain, 53–56
as What? of deployment, 132–133

concurrency, 12-Factor App, 246
configuration, deployment, 133–135
configuration management

data store, 185
DevOps adoption roadmap example, 339–340
by environment providers, 221
by IT service management, 154

configuration variables, 12-Factor App, 245
configure and build phase, ASUM, 182
connected devices. see DevOps for Internet of

Things (IOT)
Container as a Service (CaaS)

cloud-native apps requiring, 248
implementing DevOps platform via APIs,

255–256
overview of, 241

containers, cloud adoption model, 238–241
continuous business planning, 27
continuous delivery (CD)

Antifragile systems and, 218–219
automating deployment, 16
Big Data and Analytics, 184–185
continuous deployment vs., 18–20, 128
continuous integration and, 12
at core of DevOps, 16–18
cycle time minimized in, 7
deployment automation for, 17–18
for Internet of Things, 179–180
of mobile apps, 167–169, 171–172
in multi-vendor pipeline, 302
in non-continuous release cycles, 164
orchestrating for microservices, 245
pipeline bottlenecks in delivery life cycle, 6
reduce batch size for, 32–33
reduce cycle time for, 96
refresh test data for, 148

continuous delivery (CD), DevOps plays
adoption of, 139–140
continuous integration to, 127, 137–138
database deployment, 130–131
defined, 128
deployment automation, 128–130
full stack deployment, 136
platform, 140–141
production-like environments, 135
push vs. pull handoff, 138–139
What? How? and Where? of deployment,

131–135

experimentation of, 206
modeled after Agile coach, 271
overcoming organizational cultural inertia,

104
role of, 271–272

COBIT (Control Objectives for Information and
Related Technology), 153

CoC (Center of Competency), 267, 268–272
Cockburn, Alistair, 4
code

development process errors in, 298
identify bottlenecks in DevOps adoption, 339
manufacturing weaknesses in, 298–299
mitigate security weaknesses in, 295

codebase, 12-Factor App, 245
collaboration

common anti-patterns in, 314
Conway’s law for teams and architecture, 104
culture of trust and, 315–318
DevOps as cultural movement for, 89,

103–106
DevOps coach role in, 272
DevOps plays for mainframe, 177
ensure visibility of current status, 15
of mobile app teams, 172
overview of, 27–28
supply chain outsourcing via, 302–304
team models for DevOps, 284

Collaborative Lifecycle Management (CLM),
IBM, 27–28

college football, improving plays, 278–279
Comaneci, Nadia, 287
communication

common anti-patterns in, 314
Conway’s law for teams and architecture, 103
developing team models for DevOps, 284
DevOps as cultural movement for, 89,

103–106
DevOps coach role in, 272
DevOps plays for mainframe, 177
ensure visibility of current status, 15
in manufacturing supply chain, 53
measuring cultural PKIs, 112–113
overcome cultural inertia via live, 37

%Complete and Accurate (%C&A), 47, 50–51
compliance, end-to-end traceability for, 121
componentization via services, microservices,

243–244
components

automation of database deployment, 130–131
in cloud-native apps, 248
continuous integration across, 126
deployment automation for, 128–129

Index352

overview of, 23–26
supply chain security via, 293–294

continuous validation, Lean startup, 203–205
contracts

common anti-patterns in, 314
manufacturing vs. software supply chain, 56
software component acquisition, 56

Control Objectives for Information and Related
Technology (COBIT), 153

Conway’s law, 102–103, 244
core plays

DevOps for Big Data and Analytics, 180–185
DevOps for Internet of Things, 177–180
DevOps for mainframe, 173–177
DevOps for mobile. see DevOps for mobile
overview of, 165
summary review, 186–187

core themes
design thinking, 275–276
Lean startup, 275
scaling DevOps for enterprise, 263–266

core themes, innovation
achieve Multi-Speed IT, 198–202
build right product, 202–206
deliver Antifragile systems, 208–215
enable experimentation, 206–208

core themes, optimization
establish right culture, 102–106
minimize cycle time, 95–98
overview of, 95
reduce batch size, 98–102

CoreOS Rocket container, 239
CoreOS Tectonic, CaaS, 241
cost

building business case, 85
business drivers for DevOps, 336
DevOps for mainframe and, 173
manufacturing vs. software supply chain, 54
project KPI metrics for, 107–108

cricket
all-rounder players in, 131
innovations in sport of, 189–190
study of field conditions in, 39–40

cross-functional teams, for cultural inertia,
104–105

Cuban, Mark, 319
cultural inertia

difficulties of measuring, 112
executives driving change in, 308
in large organizations, 258, 263
overcoming, 35–37, 64–65, 103–106

culture, DevOps
for Big Data and Analytics, 185

Continuous Delivery (Humble), 3
continuous deployment, 17–20, 128, 343
continuous feedback

12-Factor App and, 246
continuous improvement of LOBs with, 320
continuous integration enabled by, 125
continuous monitoring for, 26–27, 155–161
continuous testing for, 23–26
essential to DevOps, 159
minimize security risks with, 292
monitor mobile apps for, 172
overview of, 22–23
reduced cycle time driving, 96

continuous funding model, DevOps adoption,
344

continuous improvement
continuous feedback resulting in, 96
developing culture of, 278–284
DevOps coach attitude of, 272
DevOps culture of, 160–161, 264
The Goal introducing world to, 88
Lean thinking and, 4
in Line of business, 320
overview of, 33
reduce batch size to achieve, 100
removal of non-valued-added work for,

48–49
standardized tools/processes for, 264–265

continuous integration (CI)
for continuous delivery, 127, 137–138
at core of DevOps, 11–12
definition of, 11
DevOps adoption roadmap example, 337
DevOps play for, 123–127
for Internet of Things, 179
minimal cycle time in, 7
mobile app delivery and, 167, 168–169
ongoing testing/verification of code in,

143–145
practices of, 13–16

continuous monitoring
application delivery and Antifragile systems,

218–219
in A/B/ testing, 208
and continuous feedback, 155–161
improving quality via, 110
mitigate security risks via, 296, 297
overview of, 26–27

continuous testing
API security via, 300
of big data with virtualization, 184
DevOps adoption roadmap example, 341
environment virtualization enabling, 147

Index 353

D
daily standup meeting, 151
Daines, Andrew, 322
dashboard, delivery pipeline metrics via,

158–159
data, microservices, 244, 252
data residency, DevOps adoption roadmap, 336
data stores, Big Data and Analytics, 183–185
database deployment, continuous delivery,

130–131
datacenter latency cycle time, 97
DBAs, database deployment challenges, 131
Debois, Patrick, 2
decision making,cultural PKIs, 113
dedicated cloud, 224, 225
delivery cycle time, 96–98, 167
delivery life cycle, 6, 16–18
delivery pipeline

business drivers, 336
collaboration across, 28
in continuous delivery, 16–17
factory assembly line vs., 51–52
metrics, 157–159
minimize security risks via, 292
optimization KPIs, 110–111
optimizing. see optimization
in software supply chain, 53–54
value stream mapping of, 49–51, 57–58
VSM workshop using, 57–58
waste in. see value stream mapping (VSM)

delivery risk, reducing batch size and, 99
Deming, Dr. William E., 4
dependencies

12-Factor App, 245
between bottlenecks, 58
squad, 286

deploy phase, ASUM, 182
deployment

DevOps adoption roadmap example, 340
what is meant by, 18–19

deployment automation. see also continuous
delivery (CD), DevOps plays

across multiple delivery pipelines, 123
and APIs, 255
Big Data and Analytics, 184–185
for continuous integration, 16
DevOps adoption roadmap example, 341
improving waterfall application delivery, 114
integrating CI tools with tools for, 125–126
mobile app delivery, 169
standards for multiple, multi-speed delivery

pipelines, 200–201
testing DevOps plays for mainframe, 176–177

Center of Competency (CoC), 266–272
challenges in large organizations, 258, 259,

263–264
of collaboration, 28, 315–318
in continuous improvement, 278–284
Conway’s law for teams and architecture,

102–103
database deployment challenges, 131
executives driving change in, 308
for Internet of Things, 180
mobile app teams, 172
as movement, 103–106
overview of, 35–37
required for DevOps adoption, 41
scaling innovation across organization,

273–278
shift left and, 29
team chemistry and, 102
transformation plays for, 60–61

culture of winning, building, 261–262
culture PKIs, adopting DevOps, 111–112
current state

assessing capability maturity, 45–46
create DevOps adoption roadmap, 332
defining for optimization, 106

Customer eXperience (CX), 197–198
customer IT organizations, 74–75
customer relationships, business case, 80–81
customer representatives, LOB, 73–74, 77
customer segments

capture customer relationships, 80–81
for IT organization, 74–75
for LOB, 72–74
value propositions delivered via channels, 80
value propositions for, 75–79

customers/clients
continuous improvement of LOB via, 320
customer segments for LOB, 73
end-users vs., 73
for new business models, 193–194
partners overlapping with, 84
reduction of batch size and, 102
value propositions for, 76, 79

CX (Customer eXperience), 197–198
cycle time, defined, 11
cycle time, minimizing

build right product in Lean startup, 204–205
continuous integration/delivery via, 6–7
as core theme, 95–98
as effect of reducing batch size, 99
infrastructure as code, 21–22
inhibitors to, 10
mobile-specific DevOps challenges, 167

Index354

frustrated development manager story, 1–2
infrastructure as code, 20–22
introduction to, 4–7
metrics, 33–34
Ops view, 9–10
origins of, 2–3
practices, 10–11
shift left, 29–31

DevOps adoption roadmap example
bottlenecks, 338–340
business drivers, 336–337
DevOps Optimization and Innovation

Workshop, 334–336
DevOps practices, 341–346
existing IT initiatives, 337–338
organization background, 331–332
overview of, 331
roadmap structure, 332–333
root causes, 340–341
summary review, 346

DevOps for big data and analytics, 180–185
DevOps for Internet of Things (IOT), 177–180
DevOps for mainframe, 173–177
DevOps for mobile

continuous integration/continuous delivery,
168–169

culture and teams, 172
mobile app delivery, 171–172
mobile-specific challenges, 166–168
overview of, 165
testing and monitoring, 169–171

DevOps Optimization and Innovation
Workshop, 334–336

DevOps platform, and APIs, 255–256
DevOps plays

continuous delivery. see continuous delivery
(CD), DevOps plays

DevOps adoption roadmap, 332–333
innovation. see innovation, DevOps plays
for Internet of Things (IOT), 177–180
for mainframe, 173–177
for mobile. see DevOps for mobile
optimization. see optimization,

DevOps plays
scaling. see scaling DevOps for enterprise,

DevOps plays
DevOps project, as anti-pattern, 312–313
Dev/production parity, 12-Factor App, 246
Dev-test cycle

anti-patterns in, 135
bottlenecks in, 116
changing of Ops roles, 151–153
cycle time, 96

deployment orchestration, full stack
deployment, 232

DePodesta, Paul, 87
design

manufacturing weaknesses in, 298–299
mitigating security weaknesses in, 295

design phase, ASUM, 182–183
design thinking

building right deliverable with, 27, 205–206
DevOps adoption roadmap example, 338,

344
fostering ideas, 327
offering management, 276–278
scaling culture of innovation across

organization, 275–276
Design Thinking (Rowe), 27
developers, value propositions for IT

organization, 78
Development (Dev), addressing Ops vs., 7
Development and Test Environment Services

(IDTES), IBM, 147
development frameworks, PaaS with Cloud

Foundry, 237
development process

development cycle time, 96
mitigating errors and mistakes, 298
mitigating subversions, 297–298

DevOps
for big data and analytics, 180–185
developing cloud-native apps, 248
and outsourcing, 301–304
platform with containers, 239
as service, 237
services on PaaS, 235–236
thinking for Line of business, 318–321

DevOps, overview
architecture and risk mitigation, 31–33
business drivers, 34–35
business requirements, 10
collaborative development, 27–28
continuous business planning, 27
continuous delivery, 16–18
continuous delivery vs. continuous

deployment, 18–20
continuous feedback, 22–23
continuous improvement., 33
continuous integration, 11–13
continuous integration practices, 13–16
continuous monitoring, 26–27
continuous testing, 23–26
culture, 35–37
Dev view, 8–9
Dev vs. Ops, 7–8

Index 355

end-users
customer representatives for, 73–74
internal IT, 74
as LOB customers, 72–73
value propositions for LOB, 75–76

engagement
customer relationships as result of, 70
in DevOp transformation, 321
experimenting with fan, 278, 322
feedback improving customer, 79
innovating for new models of user, 90, 92,

195–198
between Line of business and IT, 319–321
Line of business and IT, 319–321
shift left Ops, 149–155
sponsorship and, 65

enhancements, to pilot projects, 323
environment providers, 220–221
environments

abstracting when building DevOps platform,
219–221

changing Ops roles and, 152–153
choosing transformation plays for, 60–61
continuous improvement of, 33, 282–284
continuous monitoring of all, 156
dynamic, 134
identify sources of waste, 48
integrated delivery pipeline requirements,

118–119
microservices and containers abstracting,

249
production-like. see production-like

environments
reducing batch size to improve, 100
required for DevOps adoption, 41
static, 133
test virtualization, 146–147
vertical integrations across multiple delivery

pipeline, 123
virtualizing for multiple, multi-speed

delivery, 201
as Where? of deployment, 133–135

Epic, teaming model, 286
Erhardt-Perkins system, 249–250
errors

mitigating development process, 298
mitigating project, 294–295

ESPN and sports consumption, 222
estimation, manufacturing vs. software supply

chain, 54–55
eTOM (Business Process Framework), 153
evolutionary design, microservice

architectures, 245

DevOps adoption recommendations,
345–346

diagnosing root cause, 59
hybrid approach to adopting cloud platform,

227
providing production-like environments for,

114, 135, 176
scope of Agile limited to, 7, 89, 115
Shift Left operations and, 31, 150–151
test-environment- as-service and, 147

Diaz, Manny, 278
dip, minimizing productivity, 61–63
discover test data, 148
disposability, 12-Factor App, 246
divisions

breaking down organizations along, 263
create culture to permeate all organizational,

264
develop adoption roadmap at level

of, 280
Docker, origins of, 238
Docker Cloud (previously Tutum), CaaS

service, 241
Docker Containers, 239–240, 290
Docker Swarm, 134, 240
documentation, reduce batch size to improve,

100
Dominican Republic, players gone to MLB

teams, 257
dotcom startup failures, 203
Drucker, Peter, 33–34
dumb pipes, 244
dynamic environments, 134, 135

E
efficiency

achieving maximum, 45
assessing current state, 46
eliminating waste for, 41
end-to-end traceability for practitioner, 120
reducing batch size for, 98–102
replacing non-valued-added work with,

48–49
endpoints, building microservices with smart,

244
end-to-end traceability

across teams and projects, 288
artifact repository enabling, 138
configuration/testing Big Data and Analytics,

183
integrated delivery pipeline for, 119–121
in mobile app delivery, 168–169

Index356

Fowler, Martin, 4, 13–16, 243–244
full-stack deployment, 136, 141, 345–346
functional testing, 25
fungible people, across teams and projects,

265, 288

G
Garage Method, IBM, 11
Gasol, Pau, 301
gates, mitigating security risks, 296
general manager, role in NFL, 307
The Goal (Goldratt), 3, 88
goalkeeping, importance of, 291
goals, DevOps CoC, 268–269
Goff, Jared, 198
Google, innovative culture at, 258
Google Container Engine, 241
Gopichand, Coach Pullela, 267–268
governance

build microservices with decentralized, 244
build process, 127
identify bottlenecks in DevOps adoption, 339
mobile app delivery requiring, 171
release management, 162
speed/innovation stifled by, 262

granular execution, microservices and, 249,
252

Green Hat, 145–146, 184
guilds, team model for Spotify, 286–287
gymnastics scores, standardizing, 287–288

H
Hakkinen, Mika, 325–326
Hamm, Paul, 287–288
Hammond, Paul, 2
handoffs

Apollo 13 error in, 298–299
application delivery to engineering, 178–179
degree of trust in, 316
of deployable assets to continuous delivery,

137–138
errors in application delivery, 299
inefficient waste, 47–49
push vs. pull, 138–139

Heat Orchestration Templates (HOTs),
OpenStack, 134, 231–232

Heroku, developing 12-Factor App, 245
Higgins, Matt, 322
high availability, application delivery/

Antifragile systems, 218–219
Hills, 276, 286

executives
addressing anti-patterns, 315
building business case. see business case,

developing
fostering ideas, 327–329
leading DevOps adoption. see leadership,

DevOps adoption in enterprise
leading from the front, 308
overcoming organizational cultural inertia,

104
sponsoring pilot projects, 325

experiences
DevOps coach sharing, 272
six universal, 276

experimentation
DevOps coach role in, 272
enabling, 206–208
with fan engagement, 322
fostering ideas, 327
for innovation, 194–195
isolating by capability, 323
new user engagement models, 195–198
scaling culture of innovation, 275

external providers, outsourcing supply chain,
303–304

F
factory assembly line, delivery pipeline vs.,

51–52
fail cheap, 327
fail fast, 207, 212, 327
fail often, 212–214, 327
failure

design microservices for, 245
IT systems and antifragility, 210–215

Farmville, 73
FastCustomer, 193–194
Faster, Higher, Stronger (McClusky), 160
Federer, Roger, 189
feedback. see also continuous feedback

document key activities, 83
improving waterfall application delivery, 115
mobile apps capturing user, 172

FIG (International Federation of Gymnastics),
standards, 287–288

financial approval cycle time, 97
firmware, updating, 178
flow charts, 49
Ford Model T production lines, 4
fostering

ideas, 327–329
mavericks or Unicorns, 325–327

Index 357

Indian Premier League (IPL), cricket, 190
India’s badminton Center of Competency, 267
industrialized core applications

business intent of optimization, 90
characteristics of, 91–92
mainframe systems as, 173
organizing teams based on, 93–94

inefficiency. see waste
Information Technology Infrastructure Library

(ITIL), 89, 153–155
InfoSphere Optim, IBM, 183–184
infrastructure

building microservices with automated, 245
constantly changing in cloud-native app, 248
IT service management of, 154
mitigating insider attacks on, 294
service providers, 85

Infrastructure as a service (IaaS)
abstraction at, 140
capability stack, 228–232
cloud adoption model, 226–232
implement DevOps via APIs, 255–256
PaaS vs., 227, 234
software defined environments and, 220–221

infrastructure as code, 20–22
inner APIs, 253
innovation

assess current state, 46
balance optimization, 45, 88–89
business intent, optimization vs., 89–94
in DevOp transformation, 312, 321
of mavericks or Unicorns, 326
Moneyball example, 87–88
at scale, 273–278

innovation, core themes
achieve Multi-Speed IT, 198–202
build right thing, 202–206
deliver antifragile systems, 208–211
enable experimentation, 206–208
IT systems and antifragility, 211–215

innovation, DevOps plays
achieve Multi-Speed IT, 198–202
build DevOps platform. see platform,

building DevOps
build right thing, 202–206
business model experimentation, 194–195
deliver antifragile systems, 208–211
deliver microservices architectures, 241–252
develop API economy, 253–256
enable experimentation, 206–208
Federer’s new SABR move, 189
IT systems and antifragility, 211–215

HOTs (Heat Orchestration Templates),
OpenStack, 134, 231–232

How? of deployment, 132–133
Humble, Jez, 3
hybrid systems, cloud, 227, 335
Hygieia DevOps dashboard, Capital One,

158–159

I
IaaS. see Infrastructure as a service (IaaS)
IBM

adaptation to DevOp, 3
Analytics Solutions Unified Method, 181–183
Bluemix containers, 241
Bluemix PaaS. see Bluemix PaaS, IBM
Cloud Orchestrator, 230
cloud patterns, 231
cloudMatrix, 228
Collaborative Lifecycle Management, 27–28
Development and Test Environment Services,

147
Garage Method, 11
InfoSphere Optim, 183–184
Mobile Quality Assurance, 157, 171
offering management, 276–278
open toolchain for Bluemix Paas, 289
PureApplication Systems, 231
Rational Test Virtualization Server, 145–146,

184
Secure Engineering Framework, 295
Smart Cloud Continuous Delivery, 3
Toolchain SDK, 289
transforming tech giant, 309–310
UrbanCode CodeStation repository, 138
UrbanCode Deploy, 232–233
UrbanCode Release, 163–164
Virtual System Pattern, 134, 231
Watson, 26
Watson Analytics for Social Media, 157

ideas, fostering, 327–329
IDEF diagrams, 49
IDEs (integrated development environments),

289
IDTES (Development and Test Environment

Services), IBM, 147
Imai, Masaaki, 264
impact analysis, end-to-end traceability for,

120
impedance mismatch, 115–116, 191–192
incident management, 154
incremental construction, 55–56, 98–102
in-depth VSM, 51

Index358

cost structures, 85
customer segments, 74–75
DevOps adoption roadmap and, 335–338
engagement with LOBs, 319–321
identify target state for business goals,

42–45
key partnerships in, 83–84
key resources delivered by, 82
Multi-Speed IT, 45
productivity enhancement, 312
two-speed vs. bimodal applications, 90
value propositions delivered by, 77–80

iterations, CI practices for, 12–13
iterative testing, 295
ITIL (Information Technology Infrastructure

Library), 153–155
ITKO LISA (CA Service Virtualization),

145–146, 184
Ivarsson, Anders, 285

J
Jacobsen, Ivar, 31–32
James, Bill, 87
JFrog Artifactory, 138

K
kaizen

for adoption roadmap, 281
as continuous improvement, 279–280
defined, 48

Kalanick, Travis, 192
key activities, business case, 82–83
key partnerships, business case, 84–85
Key Performance Indicators (KPIs)

addressing productivity dip, 62–63
business drivers, 34–35
culture PKIs, 111–112
delivery pipeline optimization KPIs,

110–111
optimization, 107
overview of, 34
portfolio KPIs, 108
project KPIs, 107–108
Quality Assurance KPIs, 109–110

key resources, business case, 82–83
Kim, Gene, 156
Kniberg, Henrik, 285
Knight, Bobby, 328
Knight Capital Group, 297–298
Kruchten, Philippe, 32
Kubernetes for Google, container

orchestration, 240

new business models, 193–194
new user engagement models, 195–198
optimize to innovate, 190–192
organize for, 257–259
overview of, 189–190
role of technology, 192–193
summary review, 260
Uber syndrome, 192

innovation edge applications
business intent of innovation, 90
characteristics of, 92–93
DevOps focus on, 214
mainframe systems and, 173
organize teams based on, 93–94

innovation first culture, 259
insider attacks, 294, 296–297
integrated delivery pipeline

end-to-end traceability, 119–121
Multi-Speed IT, 121–123
overview of, 117–119

integrated development environments (IDEs),
289

integration
continuous. see continuous integration (CI)
manufacturing vs. software supply chain, 54
manufacturing weaknesses in, 298–299
mitigating security weaknesses, 295
reducing batch size to improve, 99

integration streams (branches), enabling CI,
125

integration testing
continuous testing via, 25, 143–145
enabling CI, 125, 127
test data management for, 147

intellectual property (IP)
manufacturing supply chain, 52–53
measuring cultural PKIs, 113

internal end-users, IT, 74
International Federation of Gymnastics (FIG),

standards, 287–288
Internet of Things (IoT), DevOps for, 177–180
inventory, 99, 221
IoT (Internet of Things), DevOps for,

177–180
IPL (Indian Premier League), cricket, 190
islands, anti-patterns in, 313
isolation, of microservices in containers, 249
IT service management (ITSM), 153–155
IT systems

and antifragility, 210–215
anti-patterns, 315
capture customer relationships, 81
capture revenue streams, 81–82

Index 359

M
The Machine that Changed the World (Womack

and Jones), 4
mainframe, DevOps for, 173–177
mainline

build on integration machine, 14
commit daily to, 13–14
DevOps plays for mainframe, 175

Major League Soccer (MLS), business case,
67–68

making, design thinking, 276
management approval cycle time, 97
manufacturing supply chain, 52–56
markets

business context for DevOps adoption,
334–335

changing adoption roadmap for, 281
innovative new, 191

Marshall, Nick, 278
Martínez, Dennis, 257
master-slave model, 240–241
mavericks, fostering, 325–327
McCloughan, Scott, 307
McDonald’s self-serve kiosk, 196–197
mean time between failures (MTBF), 214
mean time between failures (MTBFs), 34
mean time to resolve (MTTR), 34, 214
mergers, 311, 332, 335–336
Mesos, container orchestration, 240–241
metrics

%Complete and Accurate, 47
Antifragile system, 214–215
anti-patterns from focus just on, 313
A/B testing, 207
as business driver, 34–35
capturing revenue stream, 81–82
continuous monitoring of, 26
DevOps adoption roadmap example, 338
establish KPIs for, 106–113
monitor delivery pipeline, 157–159
overcome cultural inertia via right, 37
overview of, 33–34
pilot project, 323
standardize across teams and projects, 288
value stream map, 50–51

Michaels, Al, 328
microservices architectures. see also 12-Factor

App (microservices)
12-Factor App, 245–247
cloud-native apps, 247–249
microservices and containers, 249
migration to, 249–253

L
Ladouceur, Coach Bob, 308–309
languages, PaaS with Cloud Foundry, 237
lead time, 50, 96
leadership

anti-patterns in restructuring, 313–314
foster ideas, 327–329
overcome cultural inertia via, 64–65

leadership, DevOps adoption in enterprise
build winning team, 308–309
for culture of collaboration and trust,

315–318
foster ideas, 327–329
foster mavericks or Unicorns, 325–327
for Line of business, 318–321
overview of, 307–308
start with pilot projects, 322–325
summary review, 329–330
as transformation exercise, 309–315

Lean, roots of DevOp in, 4
Lean startup

areas of focus in, 99
continuous business planning, 27
foster ideas, 327
innovation edge applications using, 92
minimum viable product and fail fast in, 207
overview of, 203–205
scale culture of innovation, 275
tools for service, 145–147

The Lean Startup (Reis), 27
Lean Thinking (Womack and Jones), 4
learning organizations, continuous

improvement in, 33
legacy processes, 172–173, 191, 253
Line of business (LOB)

capture customer relationships, 80–81
capture revenue streams, 81
cost structures, 85
customer feedback via, 43
customer segments for, 72–74
develop/deliver key resources, 82
DevOps adoption roadmap for, 280, 334–335
DevOps thinking for, 318–321
identify target state for, 43–45
key partnerships in, 83
organizational divisions representing, 263
value propositions for, 75–77, 80

LinkedIn mobile app architecture, 166–167
Linux containers, 238
local cloud, 224–225
logical partitions (LPARs), 152, 176–177
logs, 12-Factor App, 246

Index360

N
Nasem Hamed, Prince, 325
National Institute of Standards and Technology

(NIST), IaaS, 226
natural resources, manufacturing supply

chain, 52–53
NBA (National Basketball Association)

diagnosing root cause, 58
and outsourcing, 301
team owners transforming, 318–319

Nehwal, Saina, 267
Nespresso, 194
New Orleans Saints football team, 214
new user engagement models, 195–198
Nexus (Sonatype), 138
NFL (National Football League), role of general

manager, 307
Nicaraguan Baseball Academy, 257
NIST (National Institute of Standards and

Technology), IaaS, 226
nodes, as Where? of deployment, 133–135
Nolio, 3
non-Agile teams, DevOps practices for, 116
non-functional requirements (NFRs), 79, 248
non-valued-added work, as waste, 48–49
NoOps, team model for Netflix, 104
Nowitzki, Dirk, 301

O
Oakland A’s, 87–88
Obree, Graham, 325
observe, in design thinking, 276
observe-reflect-make cycle, design thinking,

276
offering management, 276–278, 343–344
offshoring, traditional, 301–302
Ohno, Taiichi, 110, 123
Olajuwon, Hakeem, 301
Olympics, team spirit in, 105
one-day match format, innovations in cricket,

190
on-premises

local cloud as, 224–225
private cloud as, 223
production environments for cloud,

227–228
Open Container Initiative of 2016, 239
Open Services for Lifecycle Collaboration

(OSLC), data-level linkage, 118
open toolchain for Bluemix Paas,

IBM, 289

overview of, 243–245
style, 241–242

middleware components, deployment
automation for, 128–129

migration, to microservices, 249–253
Miller, Bode, 325
mindset, DevOps as, 40
minimum viable product (MVP)

build right product in Lean startup, 204
foster ideas, 327
innovation edge applications, 92
for rapid experimentation, 207
set up DevOps Center of Competency, 272
in world of apps, 204–205

mission, develop trust via sense of, 316
mistakes

mitigate development process, 298
mitigate project, 294–295

mobile, DevOps for, 165–172
Mobile Quality Assurance (MQA), IBM, 157,

171
monetize business capabilities, via APIs, 253
Moneyball model, 87–88, 257
monitoring

continuous. see continuous monitoring
improving waterfall application delivery, 115

monolithic apps, migrating to microservices,
251–252

morale
impact of team members on, 113
measuring cultural change vs., 112

MQA (Mobile Quality Assurance), IBM, 157,
171

MTBF (mean time between failures), 34, 214
MTTR (mean time to resolve), 34, 214
Mudha

Seven Wastes or sources of, 110–111
as waste. see waste

Muhammed Ali, 325–326
multi-platform support, mobile DevOps

challenges, 166
multiple A/B testing, 208
multiple clouds, 237
multi-speed application delivery, root cause

analysis, 59
Multi-Speed IT

achieving, 198–202
defined, 45
with multiple delivery pipelines, 121–123
release management process, 162–163

multi-sport athletes, 198–199
MVP. see minimum viable product (MVP)

Index 361

organizational pivot, establishing innovation
culture, 259

organizational silos
anti-patterns in restructuring, 314
break down, 104–105, 266
create culture to permeate all, 263–264

organizations
anti-patterns in restructing, 313–314
develop innovation culture in large, 258–259
DevOps adoption roadmap example, 331–332
overcoming cultural inertia, 104
pressured to adopt transformative change,

309–311
scale DevOps for enterprise, 263–264

organized adoption, 265–266
organizing for innovation, DevOps play,

257–259
OSLC (Open Services for Lifecycle

Collaboration), data-level linkage, 118
OTA (over the air), updating in place via, 178
outages, DevOps adoption roadmap for, 335
outer APIs, 253, 255
outsourcing

anti-patterns in, 314
and DevOps, 301–304

over the air (OTA), updating in place via, 178
over-engineering, reducing batch size to

prevent, 100
overproduction

conducting VSM workshop, 58
end-to-end traceability reducing, 120

oversight, mitigating development process
errors, 298

overtraining syndrome, 202–203
overview VSM, 51, 53–56
ownership

of adoption roadmap, 281
anti-patterns from lack of, 313
cannot be outsourced, 314
transforming NBA through team, 318–319

P
package (artifact) repository, 137–138
Parmar, Rashik, 311
partnerships

building business case with key, 83–84
business context for DevOps adoption

roadmap, 335
patterns

changing of Ops roles, 151–153
cloud computing, 231–232

OpenStack Heat Orchestration Templates
(HOTs) patterns

as abstraction Layer, 232–233
capturing full stack environments, 152
defined, 134
deployment orchestration, 232
DevOps roadmap adoption example, 346
overview of, 231–232
standardization of platforms, 290

operate and optimize phase, ASUM, 182
operational expenditures (OpEx), LOB, 85
operations (Ops)

Dev vs., 7
ITIL focus on optimizing, 89
measure quality when adopting DevOps,

109–110
shift left engagement, 30–31, 149–155
value propositions for IT, 78

Ops cycle time, 97
Opscode (now called Chef), 3
optimization

assess current state, 46
balance innovation with, 45
business intent/innovation vs., 89–94
as core theme, 95
DevOp transformation for, 321
integrated delivery pipeline in, 117–123
for maximum efficiency, 45, 88–89
minimize cycle time, 95–98
Moneyball example, 87–88
as prerequisite for innovation, 190–192
reduce batch size for, 98–102

optimization, DevOps plays
Agile adoption, 113–117
continuous delivery, 128–141
continuous integration, 123–127
continuous monitoring and feedback,

155–161
DevOps for big data and analytics, 180–185
DevOps for Internet of Things, 177–180
DevOps for mainframe, 173–177
DevOps for mobile, 165–172
establish metrics and KPIs, 106–113
establish right culture, 102–106
overview of, 165
release management, 161–164
shift left - Ops engagement, 149–155
shift left testing, 142–149
summary review, 186–187

orchestration
of containers, 240–241
deployment automation for, 128–129

Index362

ESPN and sports consumption, 222
innovative interactive user, 191
mobile-specific DevOps challenges, 166
required for DevOps adoption, 41
security for DevOps, 295–299
selecting pilot project, 324
service providers for, 85
standardization of, 289–290

playbook, developing DevOps
assess current state, 45–46
identify target state, 42–45
overview of, 41–42

PLM (product lifecycle management), Internet
of Things, 178, 180

Poppiendieck, Tom and Mary, 47
portability across clouds, OpenStack Heat,

232–233
port-binding, 12-Factor App, 246
portfolio KPIs, 108
Pre Play Sports, 322
predictive analysis, via continuous feedback,

26–27
pre-production environments

continuous delivery to, 164
releasing small batch deliverable to, 102

prioritization, bottlenecks in delivery pipeline,
58

privacy, protecting data, 148
private cloud, 223–225
private development app stores, 172
private PaaS, 234
process improvement

required for DevOps adoption, 41
transformation plays for, 60–61

process time, value stream map metrics, 50–51
processes

12-Factor App, 246
conducting VSM workshop, 57–58
continuous improvement of, 33, 282–284
DevOps requiring transformation of, 106
identifying waste with VSM of, 49–51
inefficient waste in, 48–49
overcoming cultural inertia relative to, 64–65
reducing batch size to improve, 100–101
security for DevOps, 295–299
standardization of, 264–265, 287–290

product lifecycle management (PLM), Internet
of Things, 178, 180

production-like environments
for 12-Factor App, 246
for continuous delivery, 135
DevOps adoption recommendations,

345–346

peer-to-peer money transfer, as innovation, 191
people

DevOps requiring transformation of,
105–106

as fungible across teams and projects, 265,
288

role of leader in fostering/developing,
317–318

performance testing
continuous testing via, 23–25, 143–144
just before final release, 142
mobile apps require extensive, 168
test data management for, 147

phases, Analytics Solutions Unified Method
(ASUM), 182–183

philosophy, adopting DevOps as, 40
The Phoenix Project (Kim), 3, 88
piggyback, establishing innovation culture,

259
pilot projects

criteria for selecting, 324–325
initiating adoption via, 63–64
starting with, 322–323

pipeline. see delivery pipeline
pitch, in sport of cricket, 39–40
Plan–Do–Check–Act (PDCA) cycle, 4
planning, multiple, multi-speed delivery

pipelines, 123
planning, multi-speed delivery pipelines,

199–200
platform, building DevOps

application delivery and Antifragile systems,
218–219

cloud-hosted DevOps platform, 221–226
containers, 238–241
environment abstraction, 219–221
Infrastructure as a service (IaaS), 226–232
as integrated delivery pipeline, 217–218
OpenStack Heat as abstraction layer for,

232–233
Platform as a service (PaaS), 233–237
for sports/athletics in American schools, 216

Platform as a service (PaaS)
abstraction at, 140
changing Ops roles and, 153
cloud adoption model, 233–237
cloud-native apps requiring, 248
IaaS vs., 227
implementing DevOps platform via APIs,

255–256
platforms

choose transformation plays for, 60–61
continuous delivery, 140–141, 153

Index 363

raw materials, manufacturing supply chain,
52–53

RCA. see Root Cause Analysis (RCA)
Red Swoosh, 192
Redbox kiosk company, 196–197
redundancy, 218–219
refactor code/data, migrating to microservices,

252
reflecting

in design thinking, 276
experimentation and, 206

regulations, DevOps adoption roadmap, 335,
337

Reid, Lee, 315–316
release management

across multiple delivery pipelines, 123,
201–202

DevOps adoption roadmap example, 340–341
DevOps play for, 161–164
minimize security risks, 292

release train, 7
release weekends, 139
repackaging applications, migrating to

microservices, 251
Request for Proposals (RFPs), outsourcing, 304
requests, identify waste in delivery pipeline, 48
requirements

in DevOps adoption roadmap, 338–339
manufacturing vs. software supply chain, 54

resources
business case identifying key, 82–83
optimizing for back-end processes, 192
as Where? of deployment, 133–135

responsibility, create culture of, 104–105
REST APIs, building microservices, 244
REST/JSON interfaces, APIs associated with,

253
restless reinvention, design thinking, 205
return on investment (ROI), 69, 85
revenue streams, business case, 81–82
reverse takeover, establishing innovation

culture, 259
RFPs (Request for Proposals), outsourcing, 304
Right Scale Cloud Comparison, 229
risk

architecture and mitigating, 31–33
integration, 12
of optimized vs. innovative applications, 91
reduce batch size to manage, 32, 99
security-related, 293–295
shift left testing lowering project, 142

risk-value profiles, of standardized processes,
265

improve waterfall application delivery, 114
keeping on premises, 227–228
shift left testing requiring, 142–143
for test automation/continuous testing,

143–145
for testing DevOps plays for mainframe, 176
testing in, 15

productivity
DevOps transformation enhancing IT, 312
establish metrics and KPIs for optimization,

106–113
limited in Agile teams, 115

products, microservices and, 244
profiles, mobile app delivery governance, 171
project approval cycle time, 97
project KPIs, adopting DevOps, 107–108
project management

ASUM, 182
Six Sigma, 89

projects
DevOps coach linking multiple, 272
selection of pilot, 324

public cloud, 223–225
public PaaS, 234
pull handoff, 138–139, 167–168
Puppet, version environments via, 22
PureApplication Systems (PureAS), IBM, 231
push handoff, 138–139, 167–168

Q
Quality Assurance KPIs, adopting DevOps,

109–110
quality assurance (QA)

continuous delivery and, 16
continuous testing and, 24
delivery of code to, 143–144
DevOps adoption roadmap example, 337
manufacturing vs. software supply

chain, 55
reduce batch size to improve, 100
release management, 162
shift left and, 29–31
source code loss/compromise, 297

quality service level agreements (SLAs), 56

R
Ranadivé, Vivek, 319
Rancher, from Rancher Labs, 241
rapid feedback, minimizing security risk, 292
ratings, mobile app user feedback, 172
Rational Test Virtualization Server, IBM,

145–146, 184

Index364

scripts
in traditional database deployment, 130–131
versioning environments via, 21–22

Scrum
continuous improvement in, 33
daily standup meeting, 151
refinement of Agile, 123–124
sprint as iteration in, 123–124
standardization needed in, 55
water-Scrum-fall, 7, 19, 22, 115, 117

SDDCs (software defined datacenters), 220
SDEs (software defined environments),

220–221
SDK, separate integration streams by, 169
SDLC (software development lifecycle),

Internet of Things, 178, 180
Secure by Design strategy, 295
Secure Engineering Framework, IBM, 295
security for DevOps

API economy and, 299–301
business context of adoption roadmap, 335
goalkeeping and, 291
management of processes/platforms, 295–299
management of security-related risks,

292–295
overview of, 291–292

security testing
addressing bottlenecks in, 116
continuous API, 300
in continuous testing, 23, 143, 293
improving quality via, 100
in integrated delivery pipeline, 118–119
just before final release, 142
mitigating insider attacks, 294
Quality Assurance KPI measures, 109

segregation of duties, deployment/
production, 19

self-managed cloud environment, 225–226
Senge, Peter, 33
server farms, mobile apps, 169
service integration layer, cloud, 229
service level agreements (SLAs)

Antifragile systems and, 212
changing Ops roles and, 153
for cloud services, 224, 226
mitigate handoff challenges with, 299
mitigating handoff challenges, 299
release management for APIs and, 255

service orchestration (integration), IaaS cloud,
229

service virtualization tools, 145–147
service-oriented architecture (SOA), APIs in,

253

ROI (return on investment), 69, 85
roles

DevOps changing Ops team, 151–153
DevOps coach, 271–272

rollback processes, deployment with, 129–130
rolling adoption, of change across enterprise,

266
root cause. see Root Cause Analysis (RCA)
Root Cause Analysis (RCA)

of bottlenecks, 51, 58
choosing transformation plays, 60–61
DevOps adoption roadmap example, 340–341
diagnosing root cause, 58–59
of waste via value stream mapping, 282–284

roots, of DevOp, 4–7
Rumbaugh, James, 31–32

S
sabermetrics, Oakland A’s, 87–88
Sabonis, Domantas, 301
SABR move, innovation of, 189
Salesforce.com, 223, 245
Salt, versioning environments via, 22
Sanders, Deion, 238
scalability

of microservices, 244
of pilot projects, 323

Scaled Agile Framework (SAFe), 5
scaling, in continuous integration build

process, 127
scaling DevOps for enterprise

breaking down organizational silos, 266
organizational culture in, 263–264
organized adoption in, 265–266
overview of, 261–262
standardization of tools and processes in,

264–265
scaling DevOps for enterprise, DevOps plays

develop culture of continuous improvement,
278–284

develop culture of innovation at scale,
273–278

DevOps Center of Competency, 266–272
outsourcing, 301–304
security, 291–301
standardization of tools and processes,

287–290
summary review, 304–305
team models, 284–287

Schmidt, Eric, 258
SCM (single source code management), 13, 175
SCM (source code management), enabling

CI, 125

Index 365

social media
customer segments, 72–74
for feedback on user sentiment, 157
value propositions for LOB, 75–76

software defined datacenters (SDDCs), 220
software defined environments (SDEs),

220–221
software development lifecycle (SDLC),

Internet of Things, 178, 180
software release, at end of every iteration, 13
software supply chain, 53–56
software-defined environments (SDEs), 22
SOP (standard operating procedures),

development process subversions, 297–298
Sounders, 208–209
source code, loss or compromise, 297
source code management (SCM), enabling CI,

125
speed

classifying applications by, 90
DevOps adoption roadmap example, 336
impedance mismatch in Agile teams and, 115
mobile-specific challenges in DevOps, 167
Multi-Speed IT and, 121–123, 202
project KPI metrics for, 107–108

spinoff, in innovation culture, 259
sponsor users, design thinking, 276
sponsorship

overcoming cultural inertia, 65, 104
of pilot projects by executives, 325

sports customer experience, innovation and,
198–199

Spotify teaming model, 285–287
sprints, Scrum, 123–124
squads, team, 103–104, 285–286
staging environment, continuous testing via,

24–25
stakeholders

business view of DevOps, 10
develop culture of continuous improvement,

279–280, 282–284
develop DevOps Center of Competency, 272
develop team models for DevOps, 284–287
develop value propositions for IT, 78–79
inefficient waste handoffs between, 47–49
integrated delivery pipeline impacting,

117–123
IT application delivery, 74
measures of success for, 105–106
overcome cultural inertia of team, 104
scaling culture of innovation, 273–275
security concerns, 291
VSM workshop with key, 56–58

services
DevOps, on PaaS, 235–236
DevOps transformation for interruption

of, 311
existing initiatives for DevOps adoption

roadmap, 337
microservices. see microservices

architectures
release management process for multiple,

162–163
virtualizing for multiple, multi-speed

delivery pipelines, 201
shadow IT

addressed by LOB, 321
DevOps adoption roadmap example, 336
standardized platforms preventing, 289

shared ownership, culture of, 104–105
shift left testing

benefits of, 142–143
concept of, 28–29
DevOps adoption roadmap example, 337
DevOps play for Ops engagement, 149–155
overview of, 29–30
test automation/continuous testing, 143–145
test data management, 147–149
test service/environment virtualization,

145–147
silos. see organizational silos
“The Simple Math of DevOps” (Reid), 315–316
simultaneous testing, in A/B testing, 207
Sindhu, P.V., 267
single source code management (SCM), 13, 175
single-source repository, 13, 173
Six Sigma, optimizing, 89
six universal experiences, offering

management, 276
Skytap, IDTES, 147
SLAs. see service level agreements (SLAs)
sleep data, Building the Anti-Fragile Athlete,

209
Smart Cloud Continuous Delivery, IBM, 3
smart devices. see DevOps for Internet of

Things (IOT)
Smith, Jeff, 273, 309–310
snapshots, as What? of deployment, 132
SOA (service-oriented architecture),

APIs in, 253
soccer

importance of goalkeeping, 291
innovation of world clubs for, 253
Major League Soccer business case, 67–68
performance feedback in, 155
team rewards vs. individual in, 105

Index366

Big Data and Analytics, 185
challenges of reducing batch size, 101
coach working with, 271–272
cultural inertia in, 104–106
cultural PKI measures, 112–113
design thinking focus on, 205
establish right culture, 102–106
for Internet of Things, 180
leadership role in fostering/developing,

308–309, 317–318
match batch size to velocity of, 99–102
mobile app, 172
models for DevOps, 284–287
scale culture of innovation, 273–278
security, 300
selection of pilot project, 324

technology
changing adoption roadmap for, 281
container orchestration, 240–241
delivery of business models, 195
DevOps for Internet of Things, 177–180
innovation and role of, 192–193
Multi-Speed IT. see Multi-Speed IT
nature of cloud, 223
platform for rapid experimentation, 208

technology stack, pilot project, 324
Tenney, Dave, 208–209
test automation

in continuous testing, 143–145
end-to-end traceability and, 119–121
mainframe, 175
on simulated and physical devices, 169–170
vertical integrations across multiple

pipelines, 123
in waterfall application delivery, 115

test data management, best practices,
147–149

test environment-as-service, 147
test service virtualization, 25
testing

A/B. see A/B testing
big data, 183–184
builds in continuous integration, 13–14
continuous, 23–26
deploy builds for production-readiness, 16
Dev-test. see Dev-test cycle
end-to-end traceability for coverage of, 121
integrated delivery pipeline requirements,

118–119
integration. see integration testing
iterative, 295
mitigate insider attacks, 296
performance. see performance testing

standard operating procedures (SOP),
development process, 297–298

standardization
of CI build process, 127
of gymnastics scores, 287
of manufacturing vs. software supply

chain, 55
mitigating risk in manufacturing, 299
of Multi-Speed IT, 122–123, 199–202
Open Container Initiative of 2016, 239
of tools and practices, 264–265
of tools and processes, 287–290

State of DevOps Report (Kim), 3
static environments, deployment to,

133, 135
status reporting, end-to-end traceability, 121
strategic outsourcing, 302–303
streams, separate integration, 169
stubs, limitations of writing, 145
suppliers

IT organization and, 84–85
Line of business and, 84
manufacturing supply chain, 52–53
outsourcing supply chain, 303–304
software supply chain, 52–53
as supply chain security risk, 296

supply chain
defined, 52
delivery pipelines vs. factory assembly

lines, 51
manufacturing, 52–53
outsourcing, 303–304
security, 293–294, 296
software, 53–56

Swarm, Docker, 134
system integration testing, 25
system monitoring, 156
system of engagement applications, 108, 157
system of record, portfolio KPIs, 108
system performance, 26, 170
system properties, cloud-native, 247
system-level integration, CI, 127

T
T20 (Twenty20) 20-over format, cricket, 190
Taleb, Nassim Nicholas, 210
target state

assess business goals and drivers, 42–45
business goals for optimization, 106
DevOps adoption roadmap, 332

teams, DevOps
adoption roadmap and, 281, 339
anti-patterns in restructuring, 314

Index 367

uDeploy, 3
uncertainty, eliminating in Lean startup, 204
Unicorns, fostering, 325–327
unit tests, 23, 28, 143
updates

automating database deployment, 130–131
in place via over the air (OTA), 178
in pre-IOT devices, 178

UrbanCode, IBM
CodeStation repository, 138
for continuous delivery, 3
Deploy, 232–233
Release, 163–164

usage patterns, 320
user acceptance testing, 25
user experience (UX), monitoring user

sentiment, 157
user outcomes, in design thinking, 205
user personas, 320
user sentiment

capturing for mobile apps, 170–171
continuous improvement of LOB via, 320
continuous monitoring of metrics for, 26
monitoring of, 157

user story, squad owning, 286
users

continuous integration practices, 12–13
design thinking focus on, 205–206
new engagement models for, 195–198

UX (user experience), monitoring user
sentiment, 157

V
validation

continuous feedback for code, 23
continuously in Lean startup, 203–205

value propositions, 75–80, 82
value stream mapping (VSM)

build business case, 69
conduct, 49–51
continuous improvement and, 282–284
defined, 46
in-depth vs. overview exercises, 51
in DevOp transformation, 321
DevOps adoption roadmap example,

338–340
identify waste in delivery pipeline via,

46–49
identify/mitigate bottlenecks with, 116
limitations of in software supply chain,

53–54
workshop, 56

in production-like environments, 14–15,
17–18, 176

reducing batch size to improve, 100
security. see security testing
shift left. see shift left testing
system integration, 25
unit tests, 23, 25, 28, 143
virtualization, 145–147, 342–343
white box security, 294

themes. see core themes
Theory of Constraints (Goldratt), 3
Three ways of DevOps blog (Kim), 156
tool stack, application delivery platform, 141
Toolchain SDK, IBM, 289
tools

API management, 299–300
database deployment, 130–131
DevOps for mainframe, 173
DevOps requiring transformation of, 106
integrated delivery pipeline, 117–118
integrated tool-chain, 118
reducing batch size, 101–102
standardization of, 264–265, 287–290

Total Economic Impact (TEI) studies, 69
Toyota, 4
traceability

across multi-speed delivery pipelines, 123,
199

end-to-end. see end-to-end traceability
transformation, DevOps

anti-patterns, 312–315
choosing, 60–61
exercise in, 309–311
minimize dip, 61–63
overcome cultural inertia, 64–65
plays. see DevOps plays
reasons for, 311–312
use initially with pilots, 63–64

tribes, as team model, 286–287
triple option, in American football, 279
trust

culture of collaboration and, 315–318
DevOps as cultural movement building, 103
DevOps coach role in, 272
measure cultural PKIs and, 112
between Ops and Dev, 150–151

Twenty20 (T20) 20-over format, cricket, 190
two-speed applications, 90

U
Uber, 192, 195
UberBLACK, 195

Index368

W
wait-time, measuring cultural PKIs, 112
waste

conduct Root Cause Analysis, 58–59
defined, 47
DevOps goal to reduce, 111
examples of, 47
identify sources of, 282–283
process improvement by eliminating, 41
reducing batch size to minimize, 100
as removal of non-valued-added work,

48–49
value stream mapping identifying, 46–49,

57–58
waterfall application delivery, 7, 114–115
water-Scrum-fall

agility across delivery pipeline, 117
deployment/production requirements

and, 19
impedance mismatch from, 115
infrastructure as code preventing, 22
symptoms of, 7

Watson, IBM, 26
Watson Analytics for Social Media,

IBM, 157
What? of deployment, 132
Where? of deployment, 133–135
white box security tests, 294
‘Why” question, Root Cause Analysis,

58–59

X
XebiaLabs XL Release, 163

Y
Young, Yang Tae, 287–288

Z
Zappos, 113
ZooKeeper, 241

velocity, team
measure units of work in one sprint, 124
minimize batch size to meet, 99
optimize cadence to match, 124

velocity load, Building the Anti-Fragile Athlete,
209

vendors
cloud consumption models, 223–226
leveraging APIs from, 253
outsourcing to external, 301–304

venture capitalist, building business case
like, 70

versioning
in A/B testing, 208
environments, 21–22, 220
as What? of deployment, 132

vertical integrations across multiple delivery
pipeline, 123

Virtual System Pattern (vSys), IBM, 134, 231
virtualization

app stores and, 171–172
DevOps adoption roadmap example, 337
standards for multiple, multi-speed pipelines,

201
tests, 25, 170, 184
trust between Ops and Dev, 151

visibility
across teams and projects, 288
business need for, 10
in collaborative development, 28
developing team models for DevOps, 284
enabling trust, 316–317
end-to-end traceability, 119–121
importance for all teams, 15
measuring cultural PKIs, 113
overcome cultural inertia via, 37
reducing batch size to improve, 100
total trust fostered by full, 28

VMware Photon containers, 239
VMware vRealize, 230
VSM. see value stream mapping (VSM)
vSys (Virtual System Pattern), IBM, 134, 231

	9.pdf (p.1-26)
	10.1002@9781119310778.ch1.pdf (p.27-64)
	10.1002@9781119310778.ch2.pdf (p.65-91)
	10.1002@9781119310778.ch3.pdf (p.92-111)
	10.1002@9781119310778.ch4.pdf (p.112-212)
	10.1002@9781119310778.ch5.pdf (p.213-284)
	10.1002@9781119310778.ch6.pdf (p.285-329)
	10.1002@9781119310778.ch7.pdf (p.330-353)
	10.1002@9781119310778.ch8.pdf (p.354-369)
	11.pdf (p.370-391)

